Skip to main content
Log in

Using the bond energy density to predict the reinforcing ability of a composite

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model is proposed to predict the ability of a filler to reinforce a polymer. The model combines the effects of filler particle size, filler surface chemistry and filler volume fraction into one parameter called the bond energy density. Bond energy density is defined as the total interfacial bond energy per unit volume of a polymer composite. Bond energy density is determined by Fowkes's equation. The critical bond energy density, which is equivalent to the bond energy density of the composite when its tensile strength equals that of its matrix, determines whether a filler will reinforce or weaken a polymer. To get a filler reinforcing effect, the bond energy density of the composite must be greater than its critical bond energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. T. Vollenberg andD. Heikens, in“Composite interface” edited by H. Ishida and J. L. Koenig (Elsevier Scientific, New York, 1986) p. 171.

    Google Scholar 

  2. D. M. Bigg,Polym. Comp. 8 (1987) 115.

    Google Scholar 

  3. S. Mitsuishi, S. Kodama andH. Kawasaki,Polym. Comp. 9 (1988) 112.

    Google Scholar 

  4. A. Voet,J. Polym. Sci. 15 (1980) 327.

    Google Scholar 

  5. L. E. Nielsen, in“Mechanical properties of polymer and composites” (Marcel Dekker, Inc., New York, 1974) p. 411.

    Google Scholar 

  6. M. Sumita, T. Ookuma, K. Miyasaka andK. Ishikawa,J. Appl. Polym. Sci. 27 (1982) 3059.

    Google Scholar 

  7. G. Landon, G. Lewis andG. F. Boden,J. Mater. Sci. 12 (1977) 1605.

    Google Scholar 

  8. H. Alter,J. Appl. Polym. Sci. 9 (1965) 1525.

    Google Scholar 

  9. J. Leidner andR. T. Woodhams,ibid. 13 (1974) 1639.

    Google Scholar 

  10. M. P. Wagner, in “Additives for plastics” Vol. 2, edited by R. B. Seymou (Academic Press, New York, 1978) p. 25.

    Google Scholar 

  11. E. Guth,J. Appl. Phys. 16 (1945) 20.

    Google Scholar 

  12. H. M. Smallwood,ibid. 15 (1944) 758.

    Google Scholar 

  13. J. P. Trotignon, B. Sanachagrin, M. Piperaud andJ. Verdu,Polym. Comp. 3 (1982) 230.

    Google Scholar 

  14. J. C. Smith, G. A. Kermish andC. A. Fenstermaker,J. Adhesion 4 (1972) 109.

    Google Scholar 

  15. R. S. Chahal andL. E. St. Pierre,Macromolecules 1 (1968) 152.

    Google Scholar 

  16. Idem., ibid. 2 (1969) 193.

    Google Scholar 

  17. M. E. J. Dekkers andD. Heikens,J. Appl. Polym. Sci. 28 (1983) 3809.

    Google Scholar 

  18. M. Y. Boluk andH. P. Schreiber,Polym. Comp. 7 (1986) 295.

    Google Scholar 

  19. J. E. Sohn,J. Adhesion 19 (1985) 15.

    Google Scholar 

  20. F. M. Fowkes andM. A. Mostafa,Ind. Engng Chem. Prod. Res. Dev. 17 (1978) 3.

    Google Scholar 

  21. F. M. Fowkes, in “Physicochemical aspects of polymer surface”, Vol. 2, edited by K. L. Mittal (Plenum, New York, 1983) p. 583.

    Google Scholar 

  22. Idem., in “Microscopic aspects of adhesion and lubrication”, Vol. 7, edited by J. M. Georges (Elsevier, Amsterdam 1982) p. 119.

    Google Scholar 

  23. Idem., in “Recent advances in adhesion”, edited by L. H. Lee (Gordon and Breach, London, 1973) p. 39.

    Google Scholar 

  24. Idem., J. Adhesion 4 (1972) 155.

    Google Scholar 

  25. F. M. Fowkes, D. C. McCarthy andD. O. Tischler, in “Molecular characterization of composite interface”, edited by H. Ishida and G. Kumar (Plenum Press, New York, 1985) p. 401.

    Google Scholar 

  26. M. J. Marmo, M. A. Mostafa, H. Jinnal andF. M. Fowkes,Ind. Engng Chem. Prod. Res. Dev. 15 (1976) 206.

    Google Scholar 

  27. F. M. Fowkes, in “Surface and interfacial aspects of biomedical polymer” Vol. 1, edited by J. D. Andrade (Plenum Press, New York, 1985) p. 337.

    Google Scholar 

  28. J. A. Manson,Pure Appl. Chem. 57 (1985) 1667.

    Google Scholar 

  29. J. Jancar andJ. Kucera,Polym. Sci. Engng 30 (1990) 707.

    Google Scholar 

  30. Idem., ibid. 30 (1990) 714.

    Google Scholar 

  31. J. A. Manson andL. H. Sperling, in“Polymer blend and composites” (Plenum Press, New York, 1981) p. 390.

    Google Scholar 

  32. J. W. Willliams, S. W. Shang andM. D. Sacks,Mater. Res. Soc. Symp. Proc. 119 (1988) 17.

    Google Scholar 

  33. W. Stöber, A. Fink andE. Bohn,J. Colloid Interface Sci. 26 (1968) 62.

    Google Scholar 

  34. C. G. Tan, B. D. Bowen andN. Epstein,ibid. 118 (1987) 290.

    Google Scholar 

  35. R. N. Lamb andD. N. Furlong,J. Chem. Soc., Faraday Trans. 78 (1982) 61.

    Google Scholar 

  36. K. Tsutsumi andH. Takahashi,Colloid Polym. Sci. 263 (1985) 506.

    Google Scholar 

  37. O. Johnson,J. Phys. Chem. 59 (1955) 827.

    Google Scholar 

  38. H. A. Benesi,J. Phys. Chem. 78 (1956) 5490.

    Google Scholar 

  39. Idem., ibid. 61 (1957) 970.

    Google Scholar 

  40. G. Kraus,Rubber Chem. Technol. 38 (1964) 1070.

    Google Scholar 

  41. M. P. Wagner,ibid. 49 (1976) 703.

    Google Scholar 

  42. D. Parkinson, in “Reinforcement of rubber” (Lakeman & Co., London, 1957) p. 14.

    Google Scholar 

  43. D. K. Owens andR. C. Wendt,J. Appl. Polym. Sci. 13 (1969) 1741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, S.W., Williams, J.W. & Söderholm, K.J.M. Using the bond energy density to predict the reinforcing ability of a composite. J Mater Sci 27, 4949–4956 (1992). https://doi.org/10.1007/BF01105259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105259

Keywords

Navigation