Skip to main content
Log in

Steady and oscillatory flows of silicon-polypropylene ceramic compounds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rheological properties of a ceramic moulding compound, silicon powder with a polypropylene binder system, were studied using a Rheometrics mechanical spectrometer RMS-800 and an Instron capillary rheometer. The study included steady simple shear flow, transient start-up shear flow, stress relaxation upon cessation of steady shear flow, stress relaxation after a sudden shear displacement, and dynamic oscillatory shear flow. Yield behaviour was observed in both steady-shear and dynamic measurements. The empirical Cox-Merz rule which is usually applicable to polymer melts and solutions was found to be invalid for this material. The modified Cox-Merz rule, in which the apparent viscosity versus shear rate is equal to the complex viscosity versus the shear-rate amplitude in the highly nonlinear region, was found to be valid for this material system. A series of anomalous phenomena were also observed during the shear-flow experiments including work hardening in the very-low-shear-rate region, stress oscillation in the high-shear-rate region, and stress relaxation followed by substantial stress growth in the stress-relaxation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Mangels andW. Trela,Adv. Ceram. 9 (1984) 220.

    Google Scholar 

  2. B. C. Mutsuddy,J. Ind. Res. Dev. 25 (1983) 76.

    Google Scholar 

  3. F. Moore, “Rheology of ceramic systems”, (Maclaren, London, 1965), Ser. 2.

    Google Scholar 

  4. A. I. Isayev,Adv. Ceram. 21 (1987) 601.

    Google Scholar 

  5. M. A. Strivens,Amer. Ceram. Soc. Bull. 42 (1963) 13.

    Google Scholar 

  6. A. C. Anders, Jr,Ceram. Engng. Sci. Proc. 8 (1987) 11.

    Google Scholar 

  7. E. C. Bingham, “Fluidity and Plasticity” (McGraw Hill, New York, 1922).

    Google Scholar 

  8. B. C. Mutsuddy,Ind. Ceram. 839 (1989) 436.

    Google Scholar 

  9. M. J. Edirisinghe andJ. R. G. Evens,J. Mater. Sci. 22 (1987) 269.

    Google Scholar 

  10. A. M. Litman, N. R. Schott andS. W. Ozlowski,SPE Tech. Papers 22 (1976) 549.

    Google Scholar 

  11. K. Umeya,J. Soc. Rheol. (Japan) 13 (1985) 145.

    Google Scholar 

  12. R. W. Myerholtz,J. Appl. Polym. Sci. 11 (1967) 687.

    Google Scholar 

  13. J. M. Lupton andJ. W. Regester,SPE J. October (1965) 235.

  14. U. Yilmazer andD. M. Kalyon,J. Rheol. 33 (1989) 1197.

    Google Scholar 

  15. A. I. Leonov,Rheol. Acta 23 (1984) 591.

    Google Scholar 

  16. G. V. Vinogradov andA. Y. Malkin, “Rheology of polymers” (Mir, Moscow, 1980).

    Google Scholar 

  17. J. L. White, “Polymer compatibility and incompatibility principles and practices”, Vol. 2 (Harwood Academic, New York, 1982).

    Google Scholar 

  18. J. T. Bergen, in “Processing of thermoplastic materials”, edited by E. C. Bernhardt (Reinhold, New York, 1959).

    Google Scholar 

  19. J. M. McKelvey, “Polymer processing”, (Wiley, New York, 1962).

    Google Scholar 

  20. Z. Tadmor andC. G. Gogos, “Principles of polymer processing”, (Wiley, New York, 1962).

    Google Scholar 

  21. S. C. Tsai andK. Zammouri,J. Rheol. 32 (1988) 737.

    Google Scholar 

  22. V. M. Lobe andJ. L. White,Polym. Engng. Sci. 19 (1979) 617.

    Google Scholar 

  23. S. Montes, J. L. White andN. Nakajima,J. Non-Newt. Fluid Mech. 28 (1988) 183.

    Google Scholar 

  24. D. Chan andR. L. Powell,J. Non-Newt. Fluid Mech. 15 (1984) 165.

    Google Scholar 

  25. I. A. Glushkov, G. V. Vinogradov andV. A. Rozhkov,Mekhanika Polimerov, (USSR) 5 (1974) 902.

    Google Scholar 

  26. D. Doraiswamy, I.-L. Tsao, S. C. Danforth, A. N. Beris andA. B. Metzner, Proceedings of the Tenth International Congress of Rheology Vol. 1 (1988) pp. 300–302.

    Google Scholar 

  27. D. Doraiswamy, A. N. Mujumdar, I. Tsao, A. N. Beris, S. C. Danforth andA. B. Metzner,J. Rheol. 35 (1991) 647.

    Google Scholar 

  28. A. R. Payne,J. Appl. Polym. Sci. 3 (1960) 127.

    Google Scholar 

  29. Idem. ibid. 6 (1962) 57.

    Google Scholar 

  30. Idem., ibid. 6 (1963) 873.

    Google Scholar 

  31. K. Gandhi andR. Salovey,Polym. Engng Sci. 28 (1988) 1628.

    Google Scholar 

  32. S. Rong andC. E. Chaffey,Rheol. Acta 27 (1988) 179.

    Google Scholar 

  33. W. P. Cox andE. H. Merz,J. Polym. Sci. 28 (1958) 619.

    Google Scholar 

  34. W. Philippoff,Trans. Soc. Rheol. 10 (1966) 317.

    Google Scholar 

  35. G. V. Vinogradov, Yu. G. Yanovsky andA. I. Isayev,J. Polym. Sci. A8 (1970) 1239.

    Google Scholar 

  36. A. I. Isayev, G. Yu, V. G. Yanovsky, Vinogradov andL. A. Gordievsky,J. Engng Phys. 18 (1970) 675.

    Google Scholar 

  37. A. I. Isayev, V. A. Zolotarev andG. V. Vinogradov,Rheol. Acta 14 (1975) 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isayev, A.I., Fan, X. Steady and oscillatory flows of silicon-polypropylene ceramic compounds. J Mater Sci 29, 2931–2938 (1994). https://doi.org/10.1007/BF01117603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117603

Keywords

Navigation