Skip to main content
Log in

Newtonian flow process in polycrystalline silicon carbides: diffusional creep or Harper-Dorn creep?

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Some previous studies on hot-pressed and sintered SiC polycrystalline materials have been reexamined. Mechanical data and microstructures strongly suggest that the Newtonian creep behaviour observed in these SiC materials was induced by a dislocation process operating in Harper-Dorn creep, rather than by diffusional creep as concluded before. The supporting evidence for this suggestion includes extensive development of dislocation substructures, no dependence of creep rate upon grain size, and the measured creep rates being far faster than those predicted by the model of diffusion creep, but consistent with those estimated by the model of Harper-Dorn creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. N. Nabarro, in “Report of a Conference on the Strength of Solids”, Bristol (Physical Society, London, 1948) p. 75.

    Google Scholar 

  2. C. Herring, J. Appl. Phys. 21 (1950) 437.

    Article  Google Scholar 

  3. R. L. Coble, ibid. 34 (1963) 1679.

    Article  Google Scholar 

  4. J. C. Harper and J. E. Dorn, Acta Metall. 5 (1957) 654.

    Article  CAS  Google Scholar 

  5. P. Yavari, D. A. Miller and T. G. Langdon, ibid. 30 (1982) 871.

    Article  CAS  Google Scholar 

  6. F. A. Mohamed, K. L. Murty and J. W. Morris, Metall. Trans. 4 (1973) 935.

    Article  CAS  Google Scholar 

  7. G. Malakondaiah and P. Rama Rao, Acta Metall. 29 (1981) 1203.

    Article  Google Scholar 

  8. Idem, Mater. Sci. Eng. 52 (1982) 207.

    Article  CAS  Google Scholar 

  9. J. Fiala, J. Novotny and J. Cadek, ibid. 60 (1983) 195.

    Article  CAS  Google Scholar 

  10. J. Novotny, J. Fiala and J. Cadek, Acta Metall. 33 (1985) 905.

    Article  CAS  Google Scholar 

  11. P. J. Dixon-Stubbs and B. Wilshire, Philos. Mag. 45A (1982) 519.

    Article  Google Scholar 

  12. T. G. Langdon, ibid. 47A (1982) L29–33.

    Google Scholar 

  13. J. Wolfenstine, Trans. Br. Ceram. Soc. 89 (1990) 175.

    CAS  Google Scholar 

  14. O. A. Ruano, J. Wolfenstine, J. Wadsworth and O. D. Sherby, Acta. Metall. 39 (1991) 661.

    Article  CAS  Google Scholar 

  15. J. N. Wang, J. Am. Ceram. Soc. (1994) in press.

  16. W. B. Banerdt and C. G. Sammis, Phys. Earth Planet. Inter. 41 (1985) 108.

    Article  CAS  Google Scholar 

  17. J.-P. Poirier, J. Peyronneau, J. K. Gesland and G. Brebec, ibid. 32 (1983) 273.

    Article  CAS  Google Scholar 

  18. S. Beauchesne and J.-P. Poirier, ibid. 61 (1990) 182.

    Article  Google Scholar 

  19. J. N. Wang, B. E. Hobbs, A. Ord, T. Shimamoto and M. Toriumi, Science (1994) in press.

  20. J. N. Wang, Mater. Sci. Eng. A183 (1994) 267.

    Article  Google Scholar 

  21. J. N. Wang and M. Toriumi, ibid. (1994) in press.

    Article  Google Scholar 

  22. J. N. Wang, Scripta Metall. Mater. 29 (1993) 1505.

    Article  CAS  Google Scholar 

  23. Idem, ibid. 29 (1993) 733.

    Article  CAS  Google Scholar 

  24. O. A. Ruano, J. Wadsworth and O. D. Sherby, Acta Metall. 36 (1988) 1117.

    Article  CAS  Google Scholar 

  25. J. N. Wang, Scripta Metall. Mater. 29 (1993) 1267.

    Article  CAS  Google Scholar 

  26. T. G. Langdon and P. Yavari, Acta Metall. 30 (1982) 881.

    Article  CAS  Google Scholar 

  27. J. N. Wang and T. G. Langdon, Acta. Metall. 42 (1994) 2487.

    Article  CAS  Google Scholar 

  28. C. H. Carter, Jr, R. F. Davis and J. Bentley, J. Am. Ceram. Soc. 67 (1984) 409.

    Article  CAS  Google Scholar 

  29. Idem, ibid. 67 (1984) 732.

    Article  CAS  Google Scholar 

  30. J. E. Lane, C. H. Carter Jr and R. F. Davis, ibid. 71 (1988) 281.

    Article  CAS  Google Scholar 

  31. R. D. Nixon and R. F. Davis, ibid. 75 (1992) 1786.

    Article  CAS  Google Scholar 

  32. H. Tanaka and Y. Inomata, Yogyo-Kyokai-Shi 93 (1985) 45.

    CAS  Google Scholar 

  33. G. Grathwohl, T. H. Reets and F. Thummler, Sci. Ceram. 11 (1981) 425.

    CAS  Google Scholar 

  34. S. Prochazka and P. C. Smith, in “Investigation of ceramics for high temperature turbine vanes”, AD-779-053 (G. E. Corporate R and D, P.O. Box 8, Schenectady, New York 1 2301), April 1974.

    Google Scholar 

  35. A. Djdemel, J. Cadoz and J. Philibert, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1981) p. 381.

    Google Scholar 

  36. P. L. Farnsworth and R. L. Coble, J. Am. Ceram. Soc. 49 (1966) 264.

    Article  CAS  Google Scholar 

  37. T. L. Francis and R. L. Coble, ibid. 51 (1968) 115.

    Article  CAS  Google Scholar 

  38. P. Marshall and R. B. Jones, Powder Metall. 12 (1969) 193.

    Article  CAS  Google Scholar 

  39. M. S. Seltzer, Ceram. Bull. 56 (1977) 418.

    CAS  Google Scholar 

  40. V. Krishnamachari and M. R. Notis, Mater. Sci. Eng. 27 (1977) 83.

    Article  CAS  Google Scholar 

  41. R. C. Gifkins, J. Aust. Inst. Met. 18 (1973) 137.

    Google Scholar 

  42. J. N. Wang, Philos. Mag. A (1994) in press.

  43. D. P. Hasselman and H. D. Batha, Appl. Phys. Lett. 2 (1963) 111.

    Article  CAS  Google Scholar 

  44. I. N. Frantsevich, V. A. Kravets, L. O. Egoroy, K. V. Nazarenko and V. Z. Sushkevich. Sov. Powder Metall. Met. Ceram. (Engl. Transl.) 10 (1973) 229.

    Article  Google Scholar 

  45. I. N. Frantsevich, V. A. Kravets, K. V. Nazarenko and V. Z. Sushkevich, ibid. 12 (1973) 654.

    Article  Google Scholar 

  46. I. N. Frantsevich, V. A. Kravets and K. V. Nazarenko, ibid. 14 (1975) 679.

    Article  Google Scholar 

  47. H. Posen and J. A. Bruce, in “Silicon Carbide”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of South Carolina Press, Columbia, SC, 1974) p. 238.

    Google Scholar 

  48. G. S. Corman, J. Am. Ceram. Soc. 75 (1992) 3421.

    Article  CAS  Google Scholar 

  49. F. W. Crossman and M. F. Ashby, Acta Metall. 23 (1975) 425.

    Article  CAS  Google Scholar 

  50. J. D. Hong and R. F. Davis, J. Am. Ceram. Soc. 63 (1980) 546.

    Article  CAS  Google Scholar 

  51. J. D. Hong, R. F. Davis and D. E. Newbury, J. Mater. Sci. 16 (1981) 2485.

    Article  CAS  Google Scholar 

  52. M. H. Hon and R. F. Davis, ibid. 14 (1979) 2411.

    Article  CAS  Google Scholar 

  53. M. H. Hon, R. F. Davis and D. E. Newbury, ibid. 15 (1980) 2073.

    Article  CAS  Google Scholar 

  54. K. Maeda, Yogyo-Kyokai-Shi 94 (1986) 784.

    Article  CAS  Google Scholar 

  55. J. H. Schneibel, R. L. Coble and R. M. Cannon, Acta Metall. 29 (1981) 1285.

    Article  Google Scholar 

  56. J. N. Wang, J. Struct. Geol. 16 (1994) 961.

    Article  Google Scholar 

  57. W. R. Cannon and T. G. Langdon, J. Mater. Sci. 23 (1988) 1.

    Article  CAS  Google Scholar 

  58. A. M. Kosevich, in “Dislocations in Solids”, edited by F. R. N. Nabarro, Vol. 1 (North-Holland, Amsterdam, 1979) p. 33.

    Google Scholar 

  59. E. Schreiber and N. Soga, J. Am. Ceram. Soc. 49 (1966) 342.

    Article  CAS  Google Scholar 

  60. H. D. Dietze, Z. Physik. 132 (1952) 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.N. Newtonian flow process in polycrystalline silicon carbides: diffusional creep or Harper-Dorn creep?. JOURNAL OF MATERIALS SCIENCE 29, 6139–6146 (1994). https://doi.org/10.1007/BF00354553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354553

Keywords

Navigation