Skip to main content
Log in

Quantitative phase analysis of metastable structure in a laser melted Fe-C alloy

Part II Structural analysis of overlapping tracks by X-ray diffraction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Quantitative X-ray diffraction phase analysis was utilized to investigate the structure of a Fe-3.5 wt% C alloy after laser melting. The measurements were taken on surfaces modified by a series of equidistant laser tracks with overlappings k = 0.25, 0.50 and 0.75, and the results were extrapolated to the non-interfering tracks. On the same samples, the microstructure was observed by scanning electron microscopy. The structure of the rapidly solidified surface layers consists of α-Fe (ferrite and martensite), γ-Fe (retained austenite) and cementite. The results of X-ray diffraction point to a very high amount of carbide indicating a non-stoichiometric composition of cementite. Besides, the volume fraction of α-Fe increases with increasing coefficient of overlapping k. At the same time, the volume fraction of cementite decreases while the content of γ-Fe remains nearly constant. The changes are attributed to decomposition of the metastable carbide due to tempering of the former tracks by the following laser passes. This thermal effect was quantified on the base of the heat-transfer model of moving Gaussian beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gremaud, M. Carrard and W. Kurz, Acta Metall. Mater. 39 (1991) 1431.

    Article  CAS  Google Scholar 

  2. M. Riabkina-Fishman, J. Zahavi and L. S. Zevin, J. Mater. Res. 3 (1988) 1108.

    Article  CAS  Google Scholar 

  3. M. Riabkina-Fishman, L. S. Zevin and J. Zahavi, J. Mater. Sci. Lett. 7 (1988) 741.

    Article  CAS  Google Scholar 

  4. N. Ganev, I. Kraus and J. Trpčevská, Phys. Status Solidi (a) 115 (1989) K13.

    Article  Google Scholar 

  5. I. Kraus, N. Ganev and J. Trpčevská, Kovové Materiály 28 (1990) 513.

    CAS  Google Scholar 

  6. M. Chachalák and J. Trpčevská, ibid. 29 (1991) 429.

    Google Scholar 

  7. R. Králová, J. Mater. Sci. Lett. 12 (1993) 1951.

    Article  Google Scholar 

  8. R. Králová, Mater. Sci. Eng. A174 (1994) L51.

    Article  Google Scholar 

  9. M. Carbucicchio, G. Meazza, G. Palombarini and G. Sambogna, J. Mater. Sci. 18 (1983) 1543.

    Article  CAS  Google Scholar 

  10. A. Walker, H. M. Flower and D. R. F. West, ibid. 20 (1985) 989.

    Article  CAS  Google Scholar 

  11. F. Fouquet and E. Szmatula, Mater. Sci. Eng. 98 (1988) 305.

    Article  CAS  Google Scholar 

  12. B. D. Cullity, in “Elements of X-Ray Diffraction” (Addision-Wesley, Reading, Massachusetts 1956) p. 392.

    Google Scholar 

  13. G. Faninger and U. Hartman, Härterei-Techn. Mitt. 27 (1972) 233.

    CAS  Google Scholar 

  14. J. Fiala, Kovové Materiály 6 (1968) 579.

    CAS  Google Scholar 

  15. R. W. G. Wyckoff, in “tCrystal Structures”, Vol. 2, 2nd Edn (J. Wiley, New York, 1964) pp. 112–115.

    Google Scholar 

  16. A. Taylor, in “X-Ray Metallography” (J. Wiley, New York 1960) p. 249.

    Google Scholar 

  17. H. Faber and U. Hartman, Härterei-Techn. Mitt., 38 (1975) 238.

    Google Scholar 

  18. J. Fiala, Silikáty 29 (1985) 273.

    CAS  Google Scholar 

  19. U. Hartman, Härterei-Techn. Mitt. 27 (1972) 251.

    Google Scholar 

  20. L. E. Eiselstein, O. A. Ruano and O. D. Sherby, J. Mater. Sci. 18 (1983) 483.

    Article  CAS  Google Scholar 

  21. S. Nagakura, J. Phys. Soc. Japan 14 (1959) 186.

    Article  CAS  Google Scholar 

  22. R. C. Ruhl and M. Cohen, Acta metall. 15 (1967) 159.

    Article  CAS  Google Scholar 

  23. Idem, Trans. Met. Soc. AIME 245 (1969) 241.

    CAS  Google Scholar 

  24. J. M. Dubois and G. Le Caer, Acta metall. 25 (1977) 609.

    Article  CAS  Google Scholar 

  25. I. R. Sare, J. Mater. Sci. 16 (1981) 3470.

    Article  CAS  Google Scholar 

  26. E. R. Weibel, in “Stereological Methods”, Vol. 1 (Academic Press, London, 1979).

    Google Scholar 

  27. N. Zárubová, V. Kraus and J. Čermák, J. Mater. Sci. 27 (1992) 3487.

    Article  Google Scholar 

  28. J. Čermák, M. Čerňanský, P. Wolf and N. Zárubová, in 13th General Conference of the Condensed Matter Division of the European Physical Society, Regensburg, Germany, 29 March-2 April 1993, Europhysics Conference Abstracts 17A (1993) 1264.

  29. L. E. Greenwald, E. M. Breinan and B. H. Kear, in “Laser-Solid Interactions and Laser Processing”, edited by S. D. Ferris, H. J. Leamy and J. M. Poate (American Institute of Physics, New York, 1979) p. 189.

    Google Scholar 

  30. S. C. Gill, M. Zimmermann and W. Kurz, Acta Metall. Mater. 40 (1992) 2895.

    Article  CAS  Google Scholar 

  31. M. F. Ashby and K. E. Easterling, Acta Metall. 32 (1984) 1935.

    Article  CAS  Google Scholar 

  32. J. C. Ion, K. E. Easterling and M. F. Ashby, ibid. 32 (1984) 1949.

    Article  CAS  Google Scholar 

  33. H. L. Yakel, Int. Met. Rev. 3 (1985) 17.

    Google Scholar 

  34. G. Le Caer and S. Bauer-Grosse, Hyperfine Interactions 47 (1989) 55.

    Article  Google Scholar 

  35. E. J. Fasiska and G. A. Jeffrey, Acta Crystallogr. 19 (1965) 463.

    Article  CAS  Google Scholar 

  36. H. Schumann, in “Metallographie”, 11. Auflage (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1983) p. 314.

    Google Scholar 

  37. W. Stockens and A. Michel, Comptes Rendus 253 (1961) 2358.

    Google Scholar 

  38. N. J. Petch J. Iron Steel Inst. 149 (1944) 143.

    Google Scholar 

  39. E. Fruchart, R. Fruchart and A. Michel, Comptes Rendus 252 (1961) 3263.

    CAS  Google Scholar 

  40. P. G. Boswell and G. A. Chadwick, J. Mater. Sci. 11 (1976) 2287.

    Article  CAS  Google Scholar 

  41. A. Amulyavichyus, M. Balchyunene, S. Grigalyunas and B. Petretis, Fyz. Met. Metal-lovedenije 76 (1963) 94.

    Google Scholar 

  42. H. M. Wang and H. W. Bergmann, Scripta Met. Mater. 31 (1994) 433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čerňanský, M., Čermák, J., Zárubová, N. et al. Quantitative phase analysis of metastable structure in a laser melted Fe-C alloy. JOURNAL OF MATERIALS SCIENCE 31, 995–1004 (1996). https://doi.org/10.1007/BF00352900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352900

Keywords

Navigation