Skip to main content
Log in

Dielectric and electric properties of synthetic melanin: the effect of europium ions

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Detailed studies on dielectric and electric properties of synthetic pirocatechol and indolederived melanin, pure and doped with Eu3+, have been performed, D.C. and a.c. electrical conductivity as well as dielectric permittivity and loss angle tg have been investigated. Activation energy of d.c. conductivity for the investigated temperature range (0°C<T<50°C equals 0.63 eV for pirocatechol and 0.62 eV for indolemelanin. Europium ions Eu3+ doped to the samples do not influence the values of activation energy, but the addition of Eu3+ ions decreases the conductivity values. On the basis of depolarization current curves the energy of trap level referred to Eu3+ has been calculated. It equals 0.58 eV for pirocatechol and 0.60 eV for indolemelanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, F.:Medical Hypoth. 11 (1) (1983), 1–140.

    Google Scholar 

  2. Informal Meeting on Biophysics and Biological Functions of Melanins, Parna, March (1980) 3–4.

  3. Mc Ginnes, J.E.: Mobility gaps: A mechanism for band gaps in melanins,Science 177 (1972), 896–897.

    Google Scholar 

  4. Strzelecka, T.: Band model for synthetic DOPA-melanin,Physiol. Chem. Phys. 14 (1982), 219–222.

    Google Scholar 

  5. Strzelecka, T.: A hypothetical structure of melanin and its relation to biology,Physiol. Chem. Phys. 14 (1982), 333–337.

    Google Scholar 

  6. Osak, W., Tkacz, K., Czternastek, H., and Sławiński, J.: I–V Characteristics and electrical conductivity of synthetic melanin,Biopolymers 28 (1989), 1895–90.

    Google Scholar 

  7. Ishay, J.S. and Shimony, T.B.: Temperature dependence of the electric resistivity of the hornet cuticle,J. Theorem. Biol. 7 (1982), 91–94.

    Google Scholar 

  8. Rosenzweig, E., Fuchs, C. and Ishay, J.S.: Electrical resistance of hornet cuticle: Changes induced by xanthines-A statistical model,Physiol. Chem. Phys. and Med. NRR 17 (1985), 435–449.

    Google Scholar 

  9. Jastrzebska, M., Dworzanski, J.P. and Wilczok, T.: Dark and photo-conductivity of synthetic pheomelanins,Studia Biophys. 129 (1989), 83–90.

    Google Scholar 

  10. Strzelecka, T.: Semiconductor properties of natural melanins,Physiol. Chem. Phys. 14 (1982), 223–231.

    Google Scholar 

  11. Baroldi, P., Cappelletti, R., Crippa, P.R. and Romeo, N.: Electrical characteristics and electret behaviour of melanin,J. Electrochem. Soc. 126 (1979), 1207–1212.

    Google Scholar 

  12. Osak, W., Tkacz, K., Czternastek H. and Sławiński J.: Dielectric relaxation in synthetic melanin,Biopolymers 28 (1989), 1875–1883.

    Google Scholar 

  13. Mc Ginnes, J.E., Corry, P., and Proctor, P.: Amorphous semiconductor switching in melanins,Science 183 (1974), 853–855.

    Google Scholar 

  14. Filatov, J., Mc Ginnes, J.E., and Corry, P.,Biopolymers 15 (1976), 2309–2312.

    Google Scholar 

  15. Pullman, B. and Pullman, A.: The band structure of melanins, inQuantum Chemistry, Academic Press, New York, 1963, p. 497.

    Google Scholar 

  16. Galvao, D.S. and Caldas, J.M.: Polymerization of 5,6 Indole quinone: A view into the band structure of melanins,J. Chem. Phys. 88 (1989), 4088–4091.

    Google Scholar 

  17. Bridelli, M., Capelletti, R., and Crippa, P.R.: Electret state and hydrated structure of melanins,Bioelectrochem Bioenerget. 8 (1981), 555–567.

    Google Scholar 

  18. Trukhan, E.M., Deryabkin, V.N., and Ostrovsky, M.A.: Investigation of photoconductivity of eye pigment epithelium,Biofizika 18 (1973), 392–394.

    Google Scholar 

  19. Trukhan, E.M., Perevoschikoff, N.F., and Osrovsky, M.A.: The photoconductivity of pigment epithelium of the eye,Biofizika 15 (1970), 1052–1054.

    Google Scholar 

  20. Crippa, P.R., Cristofoletti, V., and Romeo, N.: A band model for melanin deduced from optical absorption and photoconductivity experiments,Biochem. Biophys. Acta 538 (1978), 164–170.

    Google Scholar 

  21. Kurtz, S.K., Kozikowski, S.D., and Wolfram, L.J.: Electro-optical and photorefractive materials, in Gtnter, P. (ed.)Electro-Optical and Photorefractive Materials, Proc. Int. School on Materials Science and Technology, Erice, Italy, Springer-Verlag Berlin, 1986, p. 110–130.

  22. Pethig, R.:Dielectric and Electronic Properties of Biological Materials, Wiley, London, 1979.

    Google Scholar 

  23. Jafary, A.H.-ASL, Solanki, S.N., Aarholt, E., and Smith, C.W.: Dielectric measurements on live biological materials under magnetic resonance conditions,J. Biol. Phys. 11 (1983), 15–22.

    Google Scholar 

  24. Chakraborty, D.P., Roy, S., and Chakraborty, A.: Melanin from indole under undenfriend condition, Informal Meeting on Biophysics and Biological Functions of Melanins, Parma, Conference Proceedings, 1980.

  25. Chakraborty, D.P., Chowdhury, Roy, S.K., Dey, R.N., and Chatterje, A.,Clinica Chimica Acta 82 (1987), 55.

    Google Scholar 

  26. Bogacz, A., Buszman, E., and Wilczok, T.: (1) Competition between metal ions for DOPA-melanin (2) Metal ions binding to DOPA-HSA complexesStudia Biophys. 127 (1988), 103, 127.

    Google Scholar 

  27. Stepien, K.B., Dworzanski, J.P., Bilinska, B., Porebska-Budny, M., Hollek, A.M., and Wilczok, T.: Catecholamine melanins Structural changes induced by copper ions,Biochem. Biophys. Acta 997 (1989), 49–54.

    Google Scholar 

  28. Bagirov, R.M., Stukan, R.A., Dontsov, A.E., Ostrovski, A.M., and Lapina, V.A.: Gamma resonance spectroscopic study of ferrum ions binding by melanoprotein granules of the eye pigment epithelium,Biofizyka 31 (1986), 469–474.

    Google Scholar 

  29. Sławiński, J., Paetz, M., and Elbanowski, M.: Luminescent Investigations of Eu2+/Eu3+ ions-melanin system, in Jezowska-Trzebiatowska B., Lagendziewicz J. and Strek W. edsExcited States of Transitions Metals World Scientific, Singapore, 1989, p. 472–477.

    Google Scholar 

  30. Elbanowski, M., Paetz, M., and Sławiński, J.: Chemiluminescent reactions of the systems: Eu2+/Eu3+ ATP or ADP, AMP, C-AMP-H2O2 of Biological Interest, in Jezowska-Trzebiatowska B., Lagendziewicz J., and Strek W. (eds.),Rare Earths Spectroscopy World Scientific, Singapore, 1985, p. 443–448.

    Google Scholar 

  31. Elbanowski, M., Paetz, M., Sławiński, J., and Cieśla, L.: Chemiluminescence and fluorescence of the europium ions-nucleotides system and its possible biological significance,Photochem. Photobiol. 47 (1988), 463–466.

    Google Scholar 

  32. Sarna, T., Hyde, J.S., and Swartz, H.M.: Ion-exchange in melanin: An electron spin resonance study with lanthanide probes,Science 192 (1976), 1132–1134.

    Google Scholar 

  33. Jonscher, A.K.: Presentation of dielectric functions, p. 2–114, Experimental evidence on the Time Response, p. 254–292, inDielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983, Ch. 3 and 6.

    Google Scholar 

  34. Dissado, L.A., Hill, R.M.: The fractal nature of the cluster model dielectric response function,J. Appl. Phys. 66 (1989), 2511–2524.

    Google Scholar 

  35. Niklasson, G.A.: Comparison of dielectric response function for conducting materials,J. Appl. Phys. 66 (1989), 4350–4359.

    Google Scholar 

  36. Macdonald, J.R.: Linear relaxation: Distribution, thermal activation structure and ambiguity,J. Appl. Phys. 62 (1987), 51–62.

    Google Scholar 

  37. Ngai, K.L., Jonscher, A.K., and White, C.T.: On the Origin of the universal dielectric response in condensed matter,Nature 277, 185–189.

  38. Pfister, G. and Scher, H.: Time-dependent electrical transport in Amorphous Solids: As2Se3,Phys. Rev. B 15 (1977), 2062–2083.

    Google Scholar 

  39. Cole, R.H.: Molecular correlation function approaches to dielectric relaxation, in Goodman, C.H.L. (ed.),Physics of Dielectric Solids The Institute of Physics Bristol and London, 1980, p. 1–21.

  40. Calderwood, J.H.: Lows-governing dielectric relaxation,J. Phys. C Solid State Phys. 16 (1983), L301-L303.

    Google Scholar 

  41. Hill, R.M. and Dissado, L.A.: The temperature dependence of relaxation processes,J. Phys. C Solid State Phys. 15 (1982), 5171–5193.

    Google Scholar 

  42. Weron, K.: A probabilistic mechanism hidden behind the universal power low for dielectric relaxation. General relaxation equation,J. Phys. Condens. Matter 3 (1971), 9151–9162.

    Google Scholar 

  43. Wintle, H.J.: Absorption currents and steady currents polymer dielectrics,J. Non-Crystall. Solids 15 (1974), 471–486.

    Google Scholar 

  44. Osak, W. and Tkacz, K.: Long-lasting relaxation current in TGS,Phys. Stat. Sol. (a) 100 (1987), 667–672.

    Google Scholar 

  45. Seanor, D.A. (ed.),Electrical Properties of Polymers, Ch. 1: Electrical conduction in polymers Academic Press, New York, 1982, p. 1–58.

    Google Scholar 

  46. Sarna, T.: Ion-exchange studies in melanins Seiji, M. (ed.) inProc. XI Internat. Pigment Cell Cong., Sendai, Japan, Univ. of Tokyo Press, 1981.

  47. Thathachari, Y.T. and Blois M.S.: Physical studies on melanins. II. X-ray diffraction,Biophys. J. 9 (1969), 77–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osak, W., Tkacz-Śmiech, K., Elbanowski, M. et al. Dielectric and electric properties of synthetic melanin: the effect of europium ions. J Biol Phys 21, 51–65 (1995). https://doi.org/10.1007/BF00701009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00701009

Key words

Navigation