Skip to main content
Log in

Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50° N and 30° S

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Using a filter radiometer, the meridional profile of the NO2 photolysis frequency, J(NO2), was measured between 50° N and 30° S during the cruise ANTVII/1 September/October 1988 of the research vessel Polarstern on the Atlantic Ocean. Simultaneously, global broadband irradiance and acrosol were monitored. Clean marine background air with low aerosol loads (b sp=(1–2)×10-5 m-1) was encountered at the latitudes 25° N–30° N and 18° S–27° S, respectively. Under these conditions and an almost cloudless sky J(NO2) reached 7.3×10-3 s-1 (2π sr) for a zenith angle of 30°. Between 30° N and 30° S, the latitudinal variation of the J(NO2) noontime maxima was less than ± 10%, while the mean value at noon was 7.8×10-3 s-1. For the set of all data between 50° N and 30° S, a nearly linear correlation of J(NO2) vs. global broadland irradiance was found. The slope of (8.24±0.03)×10-5 s-1/mW cm-2 agrees within 10% with observations in Jülich (51° N, 6.2° E).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behr, H. D., 1992, Net total and UV-B radiation at the sea surface, J. Atmos. Chem. 15, 299–314 (this issue).

    Google Scholar 

  • Bahe, F. C., Schurath, U., and Becker, K. H., 1980, The frequency of NO2 photolysis at ground level, as recorded by a continuous actinometer, Atmos. Environ. 14, 711–718.

    Google Scholar 

  • Bodhaine, B. A., 1983, Aerosol measurements at four background sites, J. Geophys. Res. 88, 10,753–10,768.

    Google Scholar 

  • Demerjian, K. L., Schere, K. L., and Peterson, J. T., 1980. Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere, in J. N., Pitts, R. L., Metcalf, and D., Grosjean (eds.), Advances in Environmental Science and Technology, Vol. 10, Wiley, New York, pp. 369–459.

    Google Scholar 

  • Dickerson, R. R., Stedman, D. H., and Delany, A. C., 1982, Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere, J. Geophys. Res. 87, 4933–4946.

    Google Scholar 

  • Ehhalt, D. H., 1987, Free radicals in the atmosphere, Free Rad. Res. Comms 3, 153–164.

    Google Scholar 

  • Fiocco, G., Mugnai, A., and Forlizzi, W., 1978, Effects of radiation scattered by aerosols on the photodissociation of ozone, J. Atmos. Terr. Phys. 40, 949–961.

    Google Scholar 

  • Fishman, J., and Crutzen, P. J., 1978, The origin of ozone in the troposphere, Nature 274, 855–858.

    Google Scholar 

  • Fouquart, Y., Buriez, J. C., Herman, M., and Kandel, R. S., 1990. The influence of clouds on radiation: A climate-modeling perspective, Rev. Geophys. 28, 146–166.

    Google Scholar 

  • Harvey, R. B., Stedman, D. H., and Chameides, W., 1977, Determination of the absolute rate of solar photolysis of NO2, J. Air Poll. Control Assoc. 27, 663–666.

    Google Scholar 

  • Hofzumahaus, A. and Brauers, T., 1993, The measured influence of aerosol and clouds on photolysis frequencies J(NO2) and J(O1D), to be published.

  • Jackson, J. O., Stedman, D. H., Smith, R. G., Hecker, L. H., and Warner, P. O., 1975, Direct NO2 photolysis rate monitor, Rev. Sci. Instrum. 46, 376–378.

    Google Scholar 

  • Jacob, P. and Klockow, D., 1990, Hydrogen peroxide concentration variations in marine tropospheric atmosphere, in G., Restelli and G., Angeletti (eds.), Proc. 5th Europ. Symp. Physico-Chem. Behaviour of Atm. Pollutants, Varese (Italy), 25–28 September, 1989, Kluwer Academic Publ., Dordrecht, pp. 638–644.

    Google Scholar 

  • Junkerman, W., Platt, U., and Volz-Thomas, A., 1989, A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules, J. Atmos. Chem. 8, 203–227.

    Google Scholar 

  • Kondratyev, K. Ya., 1969, Radiation in the Atmosphere, Academic Press, New York, pp. 431 ff.

    Google Scholar 

  • Koppmann, R., Bauer, R., Johnen, F. J., Plass, C., and Rudolph, J., 1992, The distribution of ligh non-methane hydrocarbons over the mid-Atlantic: results of the Polarstern cruise ANT VII/1. J. Atmos. Chem. 15, 215–234 (this issue).

    Google Scholar 

  • Liu, S. C., McFarland, M., and Kley, d., 1983, Tropospheric NO x and O3 budgets in the equatorial pacific, J. Geophys. Res. 88, 1360–1368.

    Google Scholar 

  • Logan, J. A., 1985, Tropospheric ozone: Seasonal behavior, trends and anthropogenic influence, J. Geophys. Res. 90, 463–482.

    Google Scholar 

  • Madronich, S., Hastie, D. R., Ridley, B. A., and Schiff, H. I., 1983, Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements, J. Atmos. Chem. 1, 3–25.

    Google Scholar 

  • Madronich, S., 1987, Intercomparison of NO2 photodissociation and UV radiometer measurements, Atmos. Environ. 21, 569–578.

    Google Scholar 

  • Paltridge, G. W. and Platt, C. M. R., 1976, Radiative Processes in Meteorology and Climatology, Elsevier Sci. Publ., Amsterdam, pp. 113–116.

    Google Scholar 

  • Papenbrock, Th., Stuhl, F., Müller, K. P., and Rudolph, J., 1992, Measurements of gaseous HNO3 over the Atlantic Ocean, J. Atmos. Chem. 15, 369–379 (this issue).

    Google Scholar 

  • Parrish, D. D., Murphy, P. C., Albritton, D. L., and Fehsenfeld, F. C., 1983, The measurement of the photodissociation rate of NO2 in the atmosphere, Atmos. Environ, 17, 1365–1379.

    Google Scholar 

  • Peterson, J. T., 1977, Dependence of the NO2 photodissociation rate constant on altitude, Atmos. Environ. 11, 689–695.

    Google Scholar 

  • Platt, U., Rudolph, J., Brauers, T., and Harris, G., 1992, Atmospheric measurements during the Polarstern cruise ANT VII/1, 54° N to 32° S: an overview, J. Atmos. Chem. 15, 203–214 (this issue).

    Google Scholar 

  • Ruby, M. G., 1985, Visibility measurement methods: I. Integrating nephelometer, JAPCA 35, 244–248.

    Google Scholar 

  • Shetter, R. E., Davidson, J. A., Cantrell, Ch. A., Burzynski, N. J., and Calvert, J. G., 1988, Temperature dependence of the atmospheric photolysis rate coefficient for NO2, J: Geophys. Res. 93, 7113–7118.

    Google Scholar 

  • Stedman, D. H., Chameides, W., and Jackson, J. O., 1975, Comparison of experimental and computed values for J(NO2), Geophys. Res. Lett. 2, 22–25.

    Google Scholar 

  • Zafonte, L., Rieger, P. L., and Holmes, J. R., 1977, Nitrogen dioxide photolysis in the Los Angeles atmosphere, Environ. Sci. Technol. 11, 483–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauers, T., Hofzumahaus, A. Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50° N and 30° S. J Atmos Chem 15, 269–282 (1992). https://doi.org/10.1007/BF00115398

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115398

Key words

Navigation