Skip to main content
Log in

A comparison of model calculations and measurements of acetone in the troposphere and stratosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We present 1-D eddy diffusion model calculations of the distributions of propane and acetone in the atmosphere for continental conditions. The magnitude of the surface seasonal variation in propane mixing ratios that we obtain is in general agreement with measurements at the surface and in the free troposphere. A comparison of the absolute values of the model with propane measurements suggests that a larger surface flux than we have used may be more appropriate for continental conditions. The acetone model results for summer conditions that we obtain are also in reasonable accord with measurements. However, we find serious disagreement between the model winter profiles of acetone and the measurements at the tropopause and in the lower stratosphere. The measured values are lower than the model values at 45° N by a factor of 7–30. In addition, it is also surprising that, given the relatively long lifetime of acetone, free tropospheric values of acetone more representative of surface values have not been measured. The results simulating the decay of elevated levels of propane in the upper troposphere caused by rapid convective transport of boundary layer air indicate that propane will be primarily dispersed by transport rather than destroyed photochemically. Thus, the impact on acetone and PAN is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold F., Knop G., and Ziereis H., 1986, Acetone measurements in the upper troposphere and lower stratosphere — implications for hydroxyl radical abundances, Nature 321, 505–507.

    Google Scholar 

  • Atkinson R. and Lloyd A. C., 1984, Evaluation of kinetic and mechanistic data for modeling of photochemical smog, J. Phys. Chem. Ref. Data 13, 315–444.

    Google Scholar 

  • Barry R. G. and Chorley R. J., 1982, Atmosphere, Weather and Climate, Methuen, New York.

    Google Scholar 

  • Baulch D. L., Cox R. A., Hampson R. F., Kerr J. A., Troe J., and Watson R. T., 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II CODATA task group on gas phase chemical kinetics, J. Phys. Chem. Ref. Data 13, 1259–1380.

    Google Scholar 

  • Bonsang B. and Lambert G., 1985, Nonmethane hydrocarbons in an oceanic atmosphere, J. Atmos. Chem. 2, 257–271.

    Google Scholar 

  • Chatfield R. B. and Crutzen P. J., 1984, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res. 89, 7111–7132.

    Google Scholar 

  • Chatfield R. B., Gardner E. P., and Calvert J. G., 1987, Sources and sinks of acetone in the troposphere: Behaviour of reactive hydrocarbons and a stable product, J. Geophys. Res. 92, 4208–4216.

    Google Scholar 

  • Chiorboli C., Bignozzi C. A., Maldotti A., Giardini P. F., Rossi A., and Carassiti V., 1983, Rate constants for the gas-phase reactions of OH radicals with β-dimethylstyrene and acetone. Mechanism of β-dimethylstyrene NOxair photooxidation, Int. J. Chem. Kin. 15, 579–586.

    Google Scholar 

  • Cox R. A., Derwent R. G., and Williams M. R., 1980, Atmospheric photooxidation reactions. Rates, reactivity, and mechanisms for reaction of organic compounds with hydroxyl radicals, Environ. Sci. Tech. 14, 57–61.

    Google Scholar 

  • DeMore, W. B., Margitan, J. J., Molina, M. J., Watson, R. T., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1985, Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publ. 85-37, Jet Propulsion Laboratory.

  • Dickerson R. R., Huffman G. J., Luke W. T., Nunnermacker L. J., Pickering K. E., Leslie A. C. D., Lindsey C. G., Slinn W. G. N., Kelly T. J., Daum P. H., Delany A. C., Greenberg J. P., Zimmerman P. R., Boatman J. F., Ray J. D., and Stedman D. H., 1987, Thunderstorms: An important mechanism in the transport of air pollutants, Science 235, 460–465.

    Google Scholar 

  • Duce R. A., Mohnen V. A., Zimmerman P. R., Grosjean D., Cautreels W., Chatfield R., Jaenicke R., Ogren J. A., Pellizari E. D., and Wallace G. T., 1983, Organic material in the global troposphere, Rev. Geophys. Space Phys. 21, 921–952.

    Google Scholar 

  • Ehhalt D. H., Rudolph J., Meixner F., and Schmidt U., 1985, Measurements of selected C2−C5 hydrocarbons in the background troposphere: vertical and latitudinal variations, J. Atmos. Chem. 3, 29–52.

    Google Scholar 

  • Gardner E. P., Wijayarantne R. D., and Calvert J. G., 1984, Primary quantum yields of photodecomposition of acetone in air under tropospheric conditions, J. Phys. Chem. 88, 5069–5076.

    Google Scholar 

  • Gidel L. T., 1983, Cumulus cloud transport of transient tracers, J. Geophys. Res. 88, 6587–6599.

    Google Scholar 

  • Henderson G. S., McConnell J. C., Templeton E. M., and Evans W. F. J., 1987, A numerical model for simulation of stratospheric chemistry, Atmosphere-Ocean 25, 427–459.

    Google Scholar 

  • Henderson, G. S., McConnell, J. C., and Evans, W. F. J., 1989, Model studies of the oxidation of light hydrocarbons in the troposphere and stratosphere, Atmosphere-Ocean, submitted.

  • Kasting J. F. and Singh H. B., 1986, Nonmethane hydrocarbons in the troposphere: Impact on the odd hydrogen and odd nitrogen chemistry, J. Geophys. Res. 91, 13,239–13,256.

    Google Scholar 

  • Knop G., and Arnold F., 1987, Stratospheric trace gas detection using a new balloon-borne ACIMS method: Acetonitrile, acetone, and nitric acid, Geophys. Res. Lett. 14, 1262–1265.

    Google Scholar 

  • Leone J. A. and Seinfeld J. H., 1985, Comparative analysis of chemical reaction mechanisms for photochemical smog, Atmos. Environ. 19, 437–464.

    Google Scholar 

  • Liu S. C., McAfee J. R., and Cicerone R. J., 1984, Radon 222 and tropospheric vertical transport, J. Geophys. Res. 89, 7291–7297.

    Google Scholar 

  • Logan J. A., Prather M. J., Wofsy S. C., and McElroy M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Penkett S. A., 1982, Non-methane organics in the remote troposphere, in E. D. Goldberg (ed.), Atmospheric Chemistry, Springer-Verlag, New York, pp. 329–355.

    Google Scholar 

  • Rudolph J., 1988, Two-dimensional distribution of light hydrocarbons: Results for the STRATOZ III experiment, J. Geophys. Res. 93, 8367–8377.

    Google Scholar 

  • Rudolph J., and Ehhalt D. H., 1981, Measurements of C2−C5 hydrocarbons over the north Atlantic, J. Geophys. Res. 86, 11,959–11,964.

    Google Scholar 

  • Rudolph J., Ehhalt D. H., and Tönnissen A., 1981, Vertical profiles of ethane and propane in the stratosphere, J. Geophys. Res. 86, 7267–7272.

    Google Scholar 

  • Singh H. W. and Hanst P. L., 1981, Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: An important reservoir for nitrogen oxides, Geophys. Res. Lett. 8, 941–944.

    Google Scholar 

  • Singh H. B., and Salas L. J., 1982, Measurement of selected light hydrocarbons over the Pacific ocean: Latitudinal and seasonal variation, Geophys. Res. Lett. 9, 842–845.

    Google Scholar 

  • Singh H. B., Salas L. J., and Viezee W., 1986, The global distribution of peroxyacetyl nitrate, Nature 321, 588–591.

    Google Scholar 

  • U.S. Standard Atmosphere Supplements, 1966, Washington, D.C.

  • U.S. Standard Atmosphere, 1976, Washington, D.C.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, G.S., McConnell, J.C. & Evans, W.F.J. A comparison of model calculations and measurements of acetone in the troposphere and stratosphere. J Atmos Chem 8, 277–298 (1989). https://doi.org/10.1007/BF00051498

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051498

Key words

Navigation