Skip to main content
Log in

High-Speed Tools for Global Information Management. II. Specifications and Uses of the Transparent Query Language (TQL)

  • Published:
Journal of Systems Integration

Abstract

In the six parts of the document “HIGH-SPEED TOOLS FOR GLOBAL INFORMATION MANAGEMENT. II. Specifications and Uses of the Transparent Query Language (TQL)” [1–6], the Transparent Query Language (TQL) that is the mathematical basis for the SOLID Retrieval/Processing System [7] is described and its use demonstrated. TQL is directly responsible for the speed, versatility, security and information/question-type independence of the SOLID System. It can be viewed as a Mathematically Complete (or Philosophically Closed) [8] data structure or content/context independent language capable of describing individual or classes of descriptors in any combination with any degree of specificity. The security system is easily used to prevent unauthorized access to any item in any file. TQL is sufficiently general to be used outside the context of information retrieval. It is capable of concisely representing and manipulating a wide variety of time dependent or static numeric and non-numeric information.

The six parts of this document [1–6], are as follows. The first part, PART IIA [1], contains a review of the literature and then introduces the Transparent Query Language. It references PART IIB [2], PART IIC [3], PART IID [4], PART IIE [5] and PART IIF [6]. Concise definitions of Transparent Query Language terms, Conclusions and Acknowledgments are given in PART IIF [6]. Section III in PART IIA [1] contains information for converting citations of sections and subsections in the original document to their locations in the partitioned document.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul A. D. de Maine, Kenneth D. Bradley, Stephen M. Jodis and Margaret M. de Maine, “High-speed tools for global information management. II. Specification and uses of the transparent query language (TQL),” PART IIA. Introduction. J. Systems Integration, 8(4), pp. 319–341,1998.

    Google Scholar 

  2. Paul A. D. de Maine, Kenneth D. Bradley, Stephen M. Jodis and Margaret M. de Maine, “High-speed tools for global information management. II. Specification and uses of the transparent query language (TQL),” PART IIB. Properties of Transparent Query Language Items. J. Systems Integration, 8(4), pp. 343–358, 1998.

    Google Scholar 

  3. Paul A. D. de Maine, Kenneth D. Bradley, Stephen M. Jodis and Margaret M. de Maine, “High-speed tools for global information management. II. Specification and uses of the transparent query language (TQL),” PART IIC. Security System, Registry Numbers, Transparent Query Language Commands. J. Systems Integration, 8(4), pp. 359–378, 1998.

    Google Scholar 

  4. Paul A. D. de Maine, Kenneth D. Bradley, Stephen M. Jodis and Margaret M. de Maine, “High-speed tools for global information management. II. Specification and uses of the transparent query language (TQL),” PART IID. Manipulation of Information Representations. To appear in J. Systems Integration.

  5. Paul A. D. de Maine, Kenneth D. Bradley, Stephen M. Jodis and Margaret M. de Maine, “High-speed tools for global information management. II. Specification and uses of the transparent query language (TQL),” PART IIE. Transparent Use of the Transparent Query Language. To appear in J. Systems Integration.

  6. Paul A. D. de Maine, Kenneth D. Bradley, Stephen M. Jodis and Margaret M. de Maine, “High-speed tools for global information management. II. Specification and uses of the transparent query language (TQL),” PART IIF. Additional Uses of the Transparent Query Language, Data Structures, Concise Definitions, Conclusions and Acknowledgments. To appear in J. Systems Integration.

  7. P. A. D. de Maine and K. D. Bradley, “High-Speed tools for global information management I. Information processing and retrieval.” J. Systems Integration 6, pp. 217–240, 1996.

    Google Scholar 

  8. P. A. D. de Maine and B. A. Marron, “The SOLID system I. A method for organizing and searching files,” in Information Retrieval: A Critical View, G. Schecter Ed., Thompson Book Co., Washington, D.C., pp. 243–282 (1967).

    Google Scholar 

  9. P. A. D. de Maine and D. E. Whitten, “Automatic organization of files III. JOBLIST language.” Management Datamatics 4, pp. 31–47, 1975.

    Google Scholar 

  10. P. A. D. de Maine and K. D. Bradley, “Research notes for the JOBLIST/SOLID system,” Report No. 19 of the Series: Automatic Systems for the Physical Sciences, CSE-90-05, Computer Science and Engineering Department, Auburn University, Auburn, AL 36849–23 pages (September/1990)

    Google Scholar 

  11. P. A. D. de Maine, K. D. Bradley, W. H. Carlisle and W. B. Dress, “Integrated systems I. Design principles.” J. of Systems Integration 5, pp. 187–200, 1995.

    Google Scholar 

  12. P. A. D. de Maine and K. G. Price, “Integrated systems II. Multi-tier interfaces for integrating heterogeneous families of systems.” J. of System Integration 5, pp. 201–217, 1995.

    Google Scholar 

  13. Ramesh Jain, in a keynote address: Content-based Interactivity, at the 10th International Conference on Tools with Artificial Intelligence (ICTAI-97) in Newport Beach, CA, 3–8/November/1997. Also see: Ramesh Jain, Rangachar Kasturi and Brian Schunck, Machine Vision. McGraw-Hill Inc., New York, 1995.

  14. J. Dugundji and I. Ugi, “An algebraic model of constitutional chemistry as a basis for chemical computer programs.” Topics in Curr. Chem. 39, pp. 19–64, 1973.

    Google Scholar 

  15. I. K. Ugi, “Aqualitative global mathematical viewof chemistry—James Dugundji's contribution to computer assistance in chemistry.” Dr. Alfred Huthig Verlag GmbH—Heidelberg, pp. 345–366, 1989.

  16. A. T. Balaban, “Chemical graphs: Looking back and glimpsing ahead.” J. Chem. Inf. & Comput. Sci 35, pp. 339–350, 1995.

    Google Scholar 

  17. G. K. Springer, AGISAR: “Asystem for automatically classifying digitized pictorial data.” PhD Dissertation, The Pennsylvania State University, Computer Science Department, August 1970.

  18. G. K. Springer, “Automatic classification of digitized pictorial data for storage and retrieval.” Management Informatics 1, pp. 135–146, 1972.

    Google Scholar 

  19. G. K. Springer, “Pattern recognition meets information retrieval.” Proceedings Second Texas Conference on Computing Systems, Austin, Texas, November 1973.

  20. P. A. D. de Maine and N. F. Chaffee, “File security in an information independent data management system,” in Management Information Systems—Selected Papers from MIS Copenhagen 70 IAG Conference, W. Goldberg, T. Herborg-Nielsen, E. Johnson and H. Josefsen Eds., Auerbach Publishers, Inc., Princeton, New Jersey, 1971.

    Google Scholar 

  21. I. Ugi, B. Gruber, N. Stein and A. Demharter, “Set-valued maps as a mathematical basis of computer assistance in stereochemistry.” J. Chem. Inf. & Comput. Sci 30, pp. 485–489, 1990.

    Google Scholar 

  22. J. Bauer, E. Fontain, and I. Ugi, “IGOR and RAIN—The first mathematically based multipurpose problemsolving computer programs for chemistry and their use” Comm. in Math. Chem. (MATCH) 27, pp. 31–48, 1992.

    Google Scholar 

  23. I. Ugi, J. Bauer, C. Blomberger, J. Brandt, A. Dietz, E. Fontain, B. Gruber, A. v. Scholley-Pjab, A. Senff and N. Stein, “Models, concepts, theories & formal languages in chemistry and their use as a basis for computer assistance in chemistry.” J. Chem. Inf. & Comput. Sci 34, pp. 3–16, 1993.

    Google Scholar 

  24. W. J. Wiswesser, 1954. A Line-Formula Notation. T Y. Crowell Co.: New York, 1954; and others by W. J. Wiswesser.

    Google Scholar 

  25. H.W. Hayward, Patent Office Research and Development Reports, No. 21, U.S. Department of Commerce, Washington, D.C., 1961.

  26. G. M. Dyson, W. E. Cossum, M. F. Lynch and H. L. Morgan, “Mechanical manipulation of chemical structure: Molform computation and substructure searching of organic structures by the use of cipher directed, extendered and random matrices.” Inform. Stor. Retr. 1, pp. 69–99, 1963 and others by G. M. Dyson quoted in Chemical Abstracts: 56—1977c, 12286g; 57—2818b, 9186d; 58—13099d; 59—14546d; 60—7424a; 61—15318g; and 62—9745g.

    Google Scholar 

  27. I. M. Hunsberger, et al. Chemical Notation Systems. National Academy of Sciences—National Research Council, Publication 1150, Washington, D.C., 1964.

    Google Scholar 

  28. J. T. Perry, “Translation and normalization components of the SOLID system,” Ph.D. Thesis, Pennsylvania State University, 1971.

  29. Ping Xia, “Normalization in the solid system.” Report No. 23 of the Series: Automatic Systems for the Physical Sciences, CSE-92-01, Computer Science and Engineering Department, Auburn University, Auburn, AL 36849—128 pages, April 1992.

    Google Scholar 

  30. Paul A. D. de Maine and Ping Xia, “High-speed manipulation of information representations. I. Normalization and mobile canonicalization.” Computers Chem. 22, pp. 321–330, 1998.

    Google Scholar 

  31. H. Hiz, “A linearization of chemical graphs.” J. Chem. Docum. 4, pp. 173–180, 1964.

    Google Scholar 

  32. L. Spialter, “The atom connectivity matrix and its characteristic polynomial.” J. Chem. Docum. 4, pp. 261–269, 1964; J. Am. Chem. Soc. 85, pp. 2012–2013, 1963.

    Google Scholar 

  33. E. H. Sussenguth, Jr., Ph.D. Thesis, Harvard University, 1964.

  34. E. Meyer, “Eine topologische kurzdarstellung chemischer strukturformeln für die dokumentation mit elektronischen rechenanlagen.” Information Storage and Retrieval 2, pp. 205–215, 1965.

    Google Scholar 

  35. Y. Fujiwara, and T. Nakayama, “A graph theory data base for storage of chemical structures organized by the block-cutpoint tree technique.” Anal. Chim. Acta 133, pp. 647–656, 1981.

    Google Scholar 

  36. Y. Zou, M. A. Johnson and C.-C. Tsai, “Modeling aromatic nitration reactions using graph-theoretic transforms.” J. Chem. Inf. & Comput. Sci 30, pp. 442–450, 1990.

    Google Scholar 

  37. L. Pogliani, “On a graph theoretical characterization of Cis/Trans isomers.” J. Chem. Inf. & Comput. Sci 34, pp. 801–804, 1994.

    Google Scholar 

  38. A. T. Balaban, X. Liu, D. J. Klein, D. Babic, T. G. Schmalz, W. A. Seitz and M. Randic, “Graph invariants for fullerenes.” J. Chem. Inf. & Comput. Sci. 35, pp. 396–404, 1995.

    Google Scholar 

  39. M. F. Lynch and J. D. Holliday, “The Sheffield generic structures project—a retrospective review.” J. Chem. Inf. & Comput. Sci 36, pp. 930–936, 1995.

    Google Scholar 

  40. R. Fugmann, G. Ploss and J. H. Winter, “Supply of information on chemical reactions. An advanced topology-based method.” J. Chem. Inf. & Comput. Sci 28, pp. 47–53, 1988.

    Google Scholar 

  41. J.-E. Dubois, “Structural organic chemistry revisited: Reasoning with topology and informatics.” Dr. Alfred Huthig Verlag GmbH—Heidelberg, pp. 211–227, 1989.

  42. A. Dietz, “Yet another representation of molecular structure.” J. Chem. Inf. & Comput. Sci 35, pp. 787–802, 1995.

    Google Scholar 

  43. F. Tate, Chem. and Eng. News 45, 78 (1967); and numerous other papers in Chem. and Eng. News, and in J. Am. Docum. by Dr. Tate and other members of the Chemical Abstract Services Staff.

    Google Scholar 

  44. H. L. Morgan, “Generation of a unique machine description for chemical structures.” J. Chem. Docum. 5, pp. 107–113, 1965.

    Google Scholar 

  45. K. K. Agarwal and H. L. Gelernter, “A computer-oriented linear canonical notational system for the representation of organic structures with stereochemistry.” J. Chem. Inf. & Comput. Sci 34, pp. 463–479, 1994.

    Google Scholar 

  46. W.-D. Ihlenfeldt and J. Gasteiger, “Augmenting connectivity information by compound name parsing: Automatic assignment of stereochemistry and isotope labeling.” J. Chem. Inf. & Comput. Sci 35, pp. 661–674, 1995.

    Google Scholar 

  47. I. L. Ruiz, J. L. C. Soto and M. A. Gomez-Nieto, “Computer translation of inorganic chemical nomenclature to a dynamic abstract data structure.” J. Chem. Inf. & Comput. Sci 34, pp. 526–533, 1994.

    Google Scholar 

  48. C. Rucker and G. Rucker, “Mathematical relation between extended connectivity and eigenvector coefficients.” J. Chem. Inf. & Comput. Sci 34, pp. 534–538, 1994.

    Google Scholar 

  49. C.-Y. Hu and L. Xu, “A new scheme for assignment of a canonical connectivity table.” J. Chem. Inf. & Comput. Sci 34, pp. 840–844, 1995.

    Google Scholar 

  50. C. J. Date, An Introduction to Database Systems. Sixth Edition, Addison Wesley Publishing Company, Inc.: New York, NY, 1995.

    Google Scholar 

  51. Philip J. Pratt and Joseph J. Adamski, Database Systems Management and Design. Boyd & Fraser Publishing Co.: Boston, 1987.

    Google Scholar 

  52. Bhavani M. Thuraisingham, Data Management Systems; Evolution and Interoperation. CRC Press: Boca Raton and New York, 1997.

    Google Scholar 

  53. Bhavani M. Thuraisingham, Consulting Editor, Handbook of Data Management 1998. Auerbach and imprint of CRC Press: Boca Raton, Boston, London, New York and Washington, D.C, 1998.

    Google Scholar 

  54. Paul M. Chirlan, Microsoft FORTRAN. Dilithium Press: Beaverton, Oregon, 1981.

    Google Scholar 

  55. P. A. D. de Maine, N. F. Chaffee and G. K. Springer, “Automatic organization of files 1. Overview of the SOLID system.” IAG Journal (IFIP Administrative Data Processing Group, Amsterdam), 4, pp. 207–219, 1971.

    Google Scholar 

  56. P. A. D. de Maine, and K. C. O'Kane, “Anational retrieval system for the physical and bio-medical sciences.” Proc. First Texas Symposium on Computer Systems, Austin, Texas, June 29-30, Section IV–1, pp. 1–13, 1972.

  57. P. A. D. de Maine, K. C. O'Kane and T. Rotwitt, Jr., “An automatic information processing/retrieval system for factories, corporations, and regions.” Management Informatics 2, 251–264, 1973.

    Google Scholar 

  58. P. A. D. de Maine, J. T. Perry and G. K. Springer, The SOLID system, Vol. I. Design Philosophy, Basic Frame and Compressors. Compiled at The Pennsylvania State University, University Park: Pennsylvania, 16802, July 1970.

    Google Scholar 

  59. N. F. Chaffee, “The strategic search component of the SOLID system.” Ph.D. Thesis, Pennsylvania State University, 1970.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Maine, P.A.D., Bradley, K.D., Jodis, S.M. et al. High-Speed Tools for Global Information Management. II. Specifications and Uses of the Transparent Query Language (TQL). Journal of Systems Integration 8, 319–341 (1998). https://doi.org/10.1023/A:1008475419995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008475419995

Navigation