Skip to main content
Log in

Thermal Decomposition of Copper(I) Thiocarbamide Chloride Hemihydrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two combinations of simultaneous thermoanalytical techniques (TG+DTA and TG+EGA) were used to study the thermal decomposition of the title compound in order to gain a better insight into the spray pyrolytic processes leading to Cu2-xS and CuInS2 thin films. After dehydration a complex sequence of reactions starts above 220°C leading through several intermediates to the formation of CuO in air at 1000°C. In an inert atmosphere Cu2S is formed which in helium above 800°C partly decomposes to Cu. XRD and FTIR were used to identify the intermediate solid phases which in air included CuCl, Cu2OSO4, Cu2OCl2 and CuSO4. EGA-FTIR confirmed the complex reaction mechanism with NH3, HCl, H2O, COS, CO2 and some HCN as main gaseous products under oxidative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mathew, P. S. Mukerjee and K. P. Vijayakumar, Thin Solid Films, 254 (1995) 278.

    Article  CAS  Google Scholar 

  2. M. Krunks, J. Madarász, L. Hiltunen, R. Mannonen, E. Mellikov and L. Niinistö, Acta Chem. Scand., 51 (1997) 294.

    Article  CAS  Google Scholar 

  3. B. Brown and C. Bates, Thin Solid Films, 188 (1990) 301.

    Article  CAS  Google Scholar 

  4. M. Krunks, E. Mellikov and O. Bijakina, Phys. Scripta, T69 (1997) 189.

    CAS  Google Scholar 

  5. M. Ortega-Lopez and A. Morales-Acevedo, Proceedings IEEE Photovoltaic Spec. Conf. 25th (1996) 1009.

  6. H. Bihri, C. Messaoudi, D. Sayah, A. Boyer, A. Mzerd and M. Abd-Lefdil, Phys. Stat. Solidi, 129 (1992) 193.

    CAS  Google Scholar 

  7. Y. A. Ugai, V. Semenov and E. Averbakh, Russian J. Inorg. Chem., 26 (1981) 147.

    Google Scholar 

  8. M. H. Hölzle, C. W. Apsel, T. Will and D. M. Kolb, J. Electrochem. Soc., 142 (1995) 3741.

    Article  Google Scholar 

  9. B. Rathke, Ber. Deutsch. Chem. Ges., 17 (1884) 297.

    Google Scholar 

  10. C. J. Doona and D. M. Stanbury, Inorg. Chem., 35 (1996) 3210.

    Article  CAS  Google Scholar 

  11. Y. Shibutani and K. Shinra, Chem. Express, 4 (1989) 321.

    CAS  Google Scholar 

  12. A. Rosenheim and W. Loewenstamm, Z. Anorg. Chem., 34 (1903) 62.

    Article  CAS  Google Scholar 

  13. Y. Kharitonov, V. Brega, A. Ablov and N. Proskina, Russian J. Inorg. Chem., 19 (1974) 1187.

    Google Scholar 

  14. M. Krunks, E. Mcllikov and O. Bijakina, Proc. Estonian Acad. Sci., Eng., 2 (1996) 98.

    CAS  Google Scholar 

  15. G. W. Watt and J. S. Thompson Jr., J. Inorg Nucl. Chem., 33 (1971) 1319.

    Article  CAS  Google Scholar 

  16. K. Swaminathan and H. M. N. H. Irving, J. Inorg. Nucl. Chem., 26 (1964) 1291.

    Article  CAS  Google Scholar 

  17. K. Györyová, V. Balek and J. Kovárova, Thermochim. Acta, 269/270 (1995) 425.

    Article  Google Scholar 

  18. T. Leskelä, M. Lippman, L. Ninistö and P. Soininen, Thermochim. Acta, 214 (1993) 9.

    Article  Google Scholar 

  19. J. Paulik, Atlas of Thermoanalytical Curves, G. Liptay (Ed.), Vol. 1, Heyden & Son Ltd., London, 1971, p. 24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krunks, M., Leskelä, T., Mannonen, R. et al. Thermal Decomposition of Copper(I) Thiocarbamide Chloride Hemihydrate. Journal of Thermal Analysis and Calorimetry 53, 355–364 (1998). https://doi.org/10.1023/A:1010157528347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010157528347

Navigation