Skip to main content
Log in

Temperature-Modulated Differential Scanning Calorimetry through Heat Diffusion Analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, a complete model of thermal diffusion in a TMDSC specimen is presented. The governing equation takes into account thermal conductivity and does not neglect temperature gradients. This model is solved analytically for a specimen of cylindrical geometry with two surfaces following the block temperature and considering the third surface insulated. The full analytical solution consists of a transient and an asymptotic expression. The asymptotic expression is divided into an underlying and a cyclic part to allow comparison with existing models. The present model finds that the phase angle between the temperatures of sample and block are dependent upon the sample material, which has not been predicted by existing models. Moreover, the present model does not require the use of an experimentally determined constant as long as the cell is ideal. It was found that the phase lag between sample and block temperatures could be described by two effective thermal diffusivities, Λ′ and Λ″, instead of complex heat capacities \(c'_p {\text{ and }}c''_{\text{p}} \) and \(c'_p {\text{ and }}c''_{\text{p}} \). These heat capacity parameters were viewed as mathematical artifacts arising from the use of an over-simplified governing equation that does not take into account thermal conductivity and thermal gradients within the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Sauerbrunn, B. S. Crowe and M. Reading, Proc. of the 21st NATAS Conference, Atlanta, Georgia 1992, p. 137.

  2. M. Reading, D. Elliott and V. Hill, Proc. of the 21st NATAS Conference, Atlanta, GA 1992, p. 145.

  3. M. Reading, R. Wilson and H. M. Pollock, Proc. of the 23rd NATAS Conference, Jacksonville, FL 1994, p. 2.

  4. J. C. Seferis, I. M. Salin, P. S. Gill and M. Reading, Proc. of the National Academy of Athens, 67 (1992) 311.

    Google Scholar 

  5. N. O. Birge and S. R. Nagel, Phys. Review Letters, 54 (1985) 2674.

    Article  CAS  Google Scholar 

  6. P. F. Sullivan and G. Seidel, Phys. Review, 173 (1968) 679.

    Article  CAS  Google Scholar 

  7. S. R. Aubuchon and P. S. Gill, J. Thermal Anal., 49 (1997) 1039.

    Article  CAS  Google Scholar 

  8. J. E. K. Schawe, Thermochim. Acta, 260 (1995) 1.

    Article  CAS  Google Scholar 

  9. J. E. K. Schawe, Thermochim. Acta, 271 (1996) 127.

    Article  CAS  Google Scholar 

  10. I. Alig, Thermochim. Acta, 304/305 (1997) 35.

    Article  CAS  Google Scholar 

  11. G. W. H. Höhne, Thermochim. Acta, 304/304 (1997) 121.

    Article  Google Scholar 

  12. J. M. Prausnitz, R. N. Lichtenthaler and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid-phase Equilibria, PTR Prentice Hall, Englewood Cliffs, NJ 1986.

    Google Scholar 

  13. J. E. K. Schawe and G. W. H. Höhne, Thermochim. Acta, 287 (1996) 213.

    Article  CAS  Google Scholar 

  14. S. H. Dillman and J. C. Seferis, J. Macromol. Sci., A26 (1989) 227.

    CAS  Google Scholar 

  15. J. C. Seferis and R. J. Samuels, Polymer Eng. and Science, 19 (1979) 975.

    Article  CAS  Google Scholar 

  16. A. Boller, Y. Jin and B. Wunderlich, J. Thermal Anal., 42 (1994) 307.

    CAS  Google Scholar 

  17. J. A. Foreman, S. M. Marcus and R. L. Blaine, Proc. of the 52nd Annual Technical Conference ANTEC 94, San Francisco, CA 1994, p. 2156.

  18. A. A. Laccy, C. Nikopoulos and M. Reading, J. Thermal Anal., 50 (1997) 279.

    Article  Google Scholar 

  19. R. Melling, F. W. Wilburn and R. M. McIntosh, Anal., Chem., 41 (1969) 1275.

    Article  CAS  Google Scholar 

  20. B. Schenker and F. Stäger, Thermochim. Acta, 304/305 (1997) 219.

    Article  CAS  Google Scholar 

  21. F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, NJ 1976.

    Google Scholar 

  22. M. Abromowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S. Government Printing Office, Washington, D. C. 1964.

    Google Scholar 

  23. F. P. Incropera and D. P. de Witt, Fundamentals of Heat and Mass Transfer, Wiley and Sons, New York 1990.

    Google Scholar 

  24. J. Brandrup and E. H. Immergut, Eds., Polymer Handbook, J. Wiley and Sons, New York 1989.

    Google Scholar 

  25. Commissions Romandes de Mathématique, de Physique et de Chimie, Formulaires et Tables, Editions du Tricorne, Geneva 1985.

  26. Y. S. Touloukian, R. W. Powell, C. Y. Ho and M. C. Nicolaou, in Thermophysical Properties of Matter, Vol. 10, IFI/Plenum, New York 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buehler, F.U., Martin, C.J. & Seferis, J.C. Temperature-Modulated Differential Scanning Calorimetry through Heat Diffusion Analysis. Journal of Thermal Analysis and Calorimetry 54, 501–519 (1998). https://doi.org/10.1023/A:1010134307537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010134307537

Navigation