Skip to main content
Log in

Optimization of Polypyrrole Chemical Synthesis by Heat Flow Reaction Calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chemical polymerization of pyrrole (Py) was carried out in a reaction calorimeter by using FeCl3 or CuCl2 as an oxidant in an acetonitrile medium. The formation heat of polypyrrole (PPy), determined under a wide range of reactant concentrations and reaction temperatures, is directly related to the PPy yields and to the degree of polymerization. Due to the negative values of both the entropy and enthalpy of the reaction the gravimetric yield is inversely related to the temperature and directly to the Py concentration. The yields to the PPy and the related reaction heats, are close to zero when the ‘ceiling temperatures’ are reached (Tceil=348 K for Fe-doped and Tceil=313 K for Cu-doped PPys). It was observed that a ‘ceiling concentration’ corresponds to each ‘ceiling temperature’ and only light oligomers are formed if Py concentration is too low. The electric conductivity values of the products were also determined and a direct relationship to the yields was found as well. The highest electric conductivity value (C=0.6 S cm−1) was related to the PPy fresh synthesized from a 0.017 M Py solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Roth, La Chimica e L'Industria, 73 (1991) 385.

    Google Scholar 

  2. H. Naarmann, La Chimica e L'Industria, 73 (1991) 401.

    Google Scholar 

  3. S. J. Higgins, Chem. Soc. Rev., 26 (1997) 247.

    Google Scholar 

  4. M. Satoh, K. Kaneto and K. Yoshino, Synthetic Met., 14 (1986) 289.

    Google Scholar 

  5. T. Bein, Stud. Surf. Sci. Catal., 102 (1996) 295.

    Google Scholar 

  6. V. Bocchi, G. P. Gardini and G. Zanella, Synthetic Met., 41 (1991) 3067.

    Google Scholar 

  7. T. V. Vernitskaya and O. N. Efimov, Uspekhi Khimii, 66 (1997) 489.

    Google Scholar 

  8. K. E. Geckeler, N. Arsalani and B. L. Rivas, Macromol. Rapid Comm., 18 (1997) 503.

    Google Scholar 

  9. M. Omastova, J. Pavlinec, J. Pionteck and F. Simon, Polym. Int., 43 (1997) 109.

    Google Scholar 

  10. X. L. Chen and S. A. Jenekhe, Macromolecules, 30 (1997) 1728.

    Google Scholar 

  11. N. Toshima and O. Ihata, Synthetic. Met., 79 (1996) 165.

    Google Scholar 

  12. Y. Q. Shen and M. X. Wan, J. Polym. Sci., Part A, 37 (1997) 3689.

    Google Scholar 

  13. I. T. Kim and R. L. Elsenbaumer, Synthetic Met., 84 (1997) 157.

    Google Scholar 

  14. V. S. Subrahmanyam, S. K. Das, B. N. Ganguly, A. Bhattaharya and A. De, Mater. Res. Bull., 32 (1997) 1063.

    Google Scholar 

  15. D. Stanke, M. L. Hallensleben and L. Toppare, Synthetic Met., 72 (1995) 159.

    Google Scholar 

  16. S. Cavallaro, A. Colligiani and G. Cum, J. Thermal Anal., 38 (1992) 2649.

    Google Scholar 

  17. S. Cavallaro, A. Colligiani and G. Cum, J. Thermal Anal., 44 (1995) 269.

    Google Scholar 

  18. P. Vincent, J. P. Chaumat and J. F. Fauvarque, J. Chim. Phys. Phys.-Chim. Biol., 92 (1995) 811.

    Google Scholar 

  19. M. F. Planche, J. C. Thieblemont, T. F. Otero and G. Bidan, J. Chim. Phys. Phys.-Chim. Biol., 92 (1995) 851.

    Google Scholar 

  20. M. F. Planche, J. C. Thieblemont, N. Mazars and G. Bidan, J. Appl. Polym. Sci., 52 (1994) 1867.

    Google Scholar 

  21. M. M. Ayad, Polym. Int., 35 (1994) 35.

    Google Scholar 

  22. W. Hoffmann, Chimia, 143 (1989) 62.

    Google Scholar 

  23. L. Solr, A. Perieŕs, F. Cunill and F. Izquierdo, Ind. Eng. Chem. Res., 36 (1997) 2012.

    Google Scholar 

  24. R. Nomen, J. Sempere and E. Serra, J. Thermal Anal., 49 (1997) 1707.

    Google Scholar 

  25. R. E. Myers, J. Electron. Mater. 15(2) (1985) 61.

    Google Scholar 

  26. M. J. Bowden in ‘Macromolecules: An Introduction to Polymer Science’, F. A. Bovey and F. H. Winslow Eds. — Academic Press Inc., New York 1979.

    Google Scholar 

  27. J. Brandrup and E. H. Immergut, Polymer Handbook, Ed. J. Wiley and Sons, New York 1989.

    Google Scholar 

  28. S. Machida, S. Miyata and A. Techagumpuch, Synthetic. Met., 31 (1989) 311.

    Google Scholar 

  29. Y. A. Dubitsky and B. A. Zhubanod, Synthetic. Met., 41–43 (1991) 373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, S. Optimization of Polypyrrole Chemical Synthesis by Heat Flow Reaction Calorimetry. Journal of Thermal Analysis and Calorimetry 58, 3–12 (1999). https://doi.org/10.1023/A:1010107331659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010107331659

Navigation