Skip to main content
Log in

Design, synthesis and catalytic activity of a serine protease synthetic model

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

The design, synthesis and catalytic properties of acyclic branched peptide carrier that possesses thecatalytic triad residues of the serine proteases isreported. The synthesis of the peptide model wastotally completed on solid support using threedifferent orthogonal amino protecting groups.Hydrolytic activity measurements againstSuc-Ala-Ala-Ala-pNA substrate showed that it ishydrolysed by the peptide model to a small extent.Despite this small hydrolytic activity, it is thefirst time, to our knowledge, that hydrolysis of such a substrate is reported by an enzyme model compound.Contrary, this enzyme model peptide showedconsiderable activity against the Boc-Ala-pNPsubstrate (kcat = 0.414 min–1 and Km = 0.228 mm). These results suggest that thedesigned carrier brings in appropriate contact thecatalytic triad residues (Ser, His, Asp) resulting inthe obtained hydrolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Neurath, H., Science, 224 (1984) 350.

    Google Scholar 

  2. Tougu, V., Meos H., Haga, M., Aaviksaar, A. and Jakuble, H.-D., FEBS Lett., 329 (1993) 40.

    Google Scholar 

  3. Nagashima, T., Watanabe, A. and Kise, H., Enzyme Microb. Technol., 14 (1992) 842.

    Google Scholar 

  4. Bailey, J.E. and Ollis, D.F., In McGraw-Hill International Editions: Biochemical Engineering Fundamentals, McGraw-Hill Book Co., 1986, p. 172.

  5. Kraut, J., Annu. Rev. Biochem., 46 (1977) 331.

    Google Scholar 

  6. D'souza, V.T. and Bender, M.L., Acc. Chem. Res., 20 (1987) 146.

    Google Scholar 

  7. Atassi, M.Z. and Manshouri, T., Proc. Natl. Acad. Sci. USA, 91 (1993) 8282.

    Google Scholar 

  8. Hahn, K.W., Klis, V.A. and Stewart, J.M., Science, 248 (1990) 1544.

    Google Scholar 

  9. Palmer, D.R.J., Buncel, E. and Thatcher, G.R.J., J. Org. Chem., 59 (1994) 5286.

    Google Scholar 

  10. Corey, D.R. and Phillips, M.A., Proc. Natl. Acad. Sci. USA, 91 (1994) 4106.

    Google Scholar 

  11. Corey, M.J., Hallakowa, E., Pugh, K. and Stewart, J.M., Appl. Biochem. Biotechnol., 47 (1994) 199.

    Google Scholar 

  12. Menger, F.M., Acc. Chem. Res., 26 (1993) 206.

    Google Scholar 

  13. Whiting, A.K. and Peticolas, W.L., Biochemistry, 33 (1994) 552.

    Google Scholar 

  14. Atherton, E. and Sheppard, R.C., In Rickwood, D. and Hames, B.D. (Eds.) Solid Phase Peptide Synthesis, A Practical Approach, IRL Press at Oxford University Press, Oxford, U.K., 1989, p. 34.

    Google Scholar 

  15. Kates, S.A., Solé, N.A., Johnson, C.R., Hudson, D., Barany, G. and Albericio, F., Tetrahedron Lett., 34 (1993) 1549.

    Google Scholar 

  16. Stevens, C.M. and Watanabe, R., J. Am. Chem. Soc., 72 (1950) 725.

    Google Scholar 

  17. Knorr, R., Trzeciak, A., Bannwarth, W. and Gillesen, D., Tetrahedron Lett., 30 (1989) 1927.

    Google Scholar 

  18. Blevins, R.A. and Tulinsky, A., J. Biol. Chem., 260 (1985) 4265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavrakoudis, A., Demetropoulos, I.N., Sakarellos, C. et al. Design, synthesis and catalytic activity of a serine protease synthetic model. Letters in Peptide Science 4, 481–487 (1997). https://doi.org/10.1023/A:1008870113215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008870113215

Navigation