Skip to main content
Log in

Cytoplasmic poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase in AEV-transformed chicken erythroblasts

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP-ribose:

adenosine (5′) diphospho(5)-β-D ribose

poly(ADP-ribose):

polymer of ADP-ribose

mRNP:

messenger ribonucleoprotein particles

PMSF:

phenylmethylsulfonyl fluoride

LDS:

lithium dodecyl sulfate

TCA:

trichloroacetic acid

References

  1. Ueda K & Hayaishi O (1985) Ann. Rev. Biochem. 54: 73–100

    Google Scholar 

  2. Gaal JC & Pearson CK (1985) Biochem. J. 230: 1–18

    Google Scholar 

  3. Roberts JH, Stark P, Giri CP & Smulson M (1975) Arch. Biochem. Biophys. 171: 305–315

    Google Scholar 

  4. Burzio LO, Concha II, Figueroa J & Concha M (1983) ADP-ribosylation, DNA repair and cancer In: Miwa M, Hayaishi O, Shall S, Smulson M & Sugimura T (Eds) (pp 141–152) Japan Sci. Soc. Press, Tokyo/VNU Science Press, Utrecht

    Google Scholar 

  5. Concha II, Concha MI, Figueroa J & Burzio LO (1985) ADP-ribosylation of proteins In: Althaus FR, Hilz H & Shall S (Eds) (pp 139–146) Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  6. Elkaim R, Thomassin H, Niedergang C, Egly JM, Kempf J & Mandel P (1983) Biochimie 65: 653–659

    Google Scholar 

  7. Thomassin H, Niedergang C & Mandel P (1985) Biochem. Biophys. Res. Commun. 133: 654–661

    Google Scholar 

  8. Tanuma SI, Kawashima K & Endo H (1986) Biochem. Biophys. Res. Commun. 135: 979–986

    Google Scholar 

  9. Tanuma SI, Kawashima K & Endo H (1986) Biochem. Biophys. Res. Commun. 136: 1110–1115

    Google Scholar 

  10. Oka J, Ueda K, Hayaishi O, Komura H & Nakanishi K (1984) J. Biol. Chem. 259: 986–995

    Google Scholar 

  11. Imaizumi-Scherrer MT, Maundrell K, Civelli O & Scherrer K (1982) Dev. Biol. 93: 123–138

    Google Scholar 

  12. Lee G & Engelhardt (1979) J. Mol. Biol. 129: 221–233

    Google Scholar 

  13. Mandel P, Okazaki H & Niedergang C (1977) FEBS Lett. 84: 331–336

    Google Scholar 

  14. Jascobson MK, Payne M, Alvarez-Gonzalez R, Juarez-Salinas H, Sims JL & Jacobson EL (1984) Methods Enzymol. 106: 483–494

    Google Scholar 

  15. Tanuma SI, Kawashima K & Endo H (1986) J. Biol. Chem. 261: 965–969

    Google Scholar 

  16. Jones G, Wilson M & Darley-Usmar V (1981) Biochem J. 193: 1013–1015

    Google Scholar 

  17. Huletsky A, Niedergang C, Frechette A, Aubin R, Gaudreau A & Poirier GG (1985) Eur. J. Biochem. 146: 277–285

    Google Scholar 

  18. Lehmann AR, Kirk-Bell S & Whish WJD (1974) Exp. Cell Res. 83: 63–72

    Google Scholar 

  19. Oka J, Ueda K & Hayaishi O (1978) Biochem. Biophys. Res. Commun. 80: 841–848

    Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL & Randal RJ (1951) J. Biol. Chem. 193: 265–275

    Google Scholar 

  21. Preobrazhensky AA & Spirin AS (1978) Prog. Nucleic Acids Res. Mol. Biol. 21: 2–38

    Google Scholar 

  22. Burzio LO, Riquelme PT, Ohtsuka E & Koide SS (1976) Arch. Biochem. Biophys. 173: 306–319

    Google Scholar 

  23. Tavassoli M, Tavassoli MH & Shall S (1983) Eur. J. Biochem. 135: 449–455

    Google Scholar 

  24. Niedergang C, Okazaki H & Mandel P (1979) Eur. J. Biochem. 102: 43–57

    Google Scholar 

  25. Benjamin RC & Gill DM (1980) J. Biol. Chem. 255: 10502–10508

    Google Scholar 

  26. Berger NA & Petzold SJ (1985) Biochemistry 24: 4352–4355

    Google Scholar 

  27. Ikai K & Ueda K (1983) J. Histochem. Cytochem. 31: 1261–1264

    Google Scholar 

  28. Payne DM, Jacobson EL, Moss J & Jacobson MK (1985) Biochemistry 24: 7540–7549

    Google Scholar 

  29. Moss J, Stanley SJ & Watkins PA (1980) J. Biol. Chem. 255: 5838–5840

    Google Scholar 

  30. Yost DA & Moss J (1983) J. Biol. Chem. 258: 4926–4929

    Google Scholar 

  31. Lee H & Iglewski WJ (1984) Proc. Natl. Acad. Sci. USA 81: 2703–2707

    Google Scholar 

  32. Iglewski WJ, Lee H & Muller P (1984) FEBS Lett. 173: 113–118

    Google Scholar 

  33. Vincent A, Goldenberg S, Standart N, Civelli O, Imaizumi-Scherrer T, Maundrell K & Scherrer K (1981) Molec. Biol. Rep. 7: 71–81

    Google Scholar 

  34. Spirin AS & Ajtkhozhin MA (1985) TIBS, April, 162–165

  35. Schmid HP, Kohler K & Setyono B (1982) J. Cell. Biol. 93: 893–898

    Google Scholar 

  36. Vincent A, Akhayat O, Goldenberg S & Scherrer K (1983) EMBO J. 2: 1869–1976

    Google Scholar 

  37. Schmid HP, Kohler K & Setyono B (1983) Molec. Biol. Rep. 9: 87–90

    Google Scholar 

  38. Egly JM, Schmitt M, Elkaim R & Kempf J (1981) Eur. J. Biochem 118: 379–387

    Google Scholar 

  39. Bag J & Sells BH (1979) J. Biol. Chem. 254: 3137–3140

    Google Scholar 

  40. Thoen C, Van Hove L, Piot E & Slegers H (1984) Biochim. Biophys. Acta 783: 105–113

    Google Scholar 

  41. Thoen C, Van Hove L & Slegers H (1986) Molec. Biol. Rep. 11: 69–75

    Google Scholar 

  42. Lorberboum H, Galski H, Scharf C, Weinstein D, De Groot N & Hochberg AA (1986) Molec. Bol. rep. 11: 29–35

    Google Scholar 

  43. Burzio LO, Riquelme PI, Ohtsuka E & Koide SS (1976) Arch. Biochem. Biophys 173: 306–319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomassin, H., de Sa, C.M., Scherrer, K. et al. Cytoplasmic poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase in AEV-transformed chicken erythroblasts. Mol Biol Rep 13, 35–44 (1988). https://doi.org/10.1007/BF00805637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00805637

Key words

Navigation