Skip to main content
Log in

Molecular dynamics simulation of silica with a first-principles interatomic potential

  • Published:
Molecular Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Woodcock, L.V., Angell, C.A., and Cheeseman, P. (1976) Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica, J. Chem. Phys., 65, 1565–1577.

    Google Scholar 

  2. Matsui, Y., and Kawamura, K. (1980) Instantaneous Structure of an MgSiO3 Melt Simulated by Molecular Dynamics, Nature, 285, 648–649.

    Google Scholar 

  3. Soules, T.F., and Busbey, R.F. (1981) Sodium Diffusion in Alkali Silicate Glass by Molecular Dynamics, J. Chem. Phys., 75, 969–975.

    Google Scholar 

  4. Matsui, Y., and Kawamura, K. (1984) Computer Simulation of Structures of Silicate Melts and Glasses, in I.Sunagawa (ed.), Materials Science of the Earth's Interior, Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp. 3–23.

    Google Scholar 

  5. Busing, W.R. (1981) WMIN, Oak Ridge National Laboratory, Report No. ORNL-5747, Oak Ridge.

  6. Parker, S.C. (1983) Prediction of Mineral Crystal Structures, Solid State Ionics, 8, 179.

    Google Scholar 

  7. Price, G.D., and S.C. Parker, S.C. (1984) Computer Simulations of the Structural and Physical Properties of the Olivine and Spinel Polymorphs of Mg2SiO4, Phys. Chem. Minerals, 10, 209–216.

    Google Scholar 

  8. Matsui, M., and Busing, W.R. (1984) Computational Modeling of the Structure and Elastic Constants of the Olivine and Spinel Forms of Mg2SiO4, Phys. Chem. Minerals, 11, 55–59.

    Google Scholar 

  9. Catlow, C.R.A., and Price, G.D. (1990) Computer Modelling of Solid-State Inorganic Materials, Nature, 347, 243–248.

    Google Scholar 

  10. Catlow, C.R.A., Freeman, C.M., and Royle, R.L. (1985) Recent Studies Using Static Simulation Techniques, Physica, 131B, 1–12.

    Google Scholar 

  11. Wall, A., and Price, G.D. (1988) Computer Simulation of the Structure, Lattice Dynamics and Thermodynamics of ilmentite-type MgSiO3, Am Mineralogist., 73, 224–231.

    Google Scholar 

  12. Tsuneyuki, S., Matsui, Y., Tsukada, M., and Aoki, H. (1988) First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics, Phys. Rev. Lett., 61, 869–872.

    Google Scholar 

  13. Tsuneyuki, S., Tsukada, M., Aoki, H., and Matsui, Y. (1990) Molecular Dynamics Simulation of Silica with a First-Principles Interatomic Potential, in F.Marumo (ed.), Dynamical Processes of Material Transport and Transformation in the Earth's Interior, Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp. 1–21.

    Google Scholar 

  14. Lasaga, A.C., and Gibbs, G.V. (1987) Applications of Quantum Mechanical Potential Surfaces to Mineral Physics Calculations, Phys. Chem. Minerals, 14, 107–117, and references therein.

    Google Scholar 

  15. Parrinello, M., and Rahman, A. (1981) Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys., 52, 7182–7190.

    Google Scholar 

  16. Nosé, S. (1984) A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, J. Chem. Phys., 81, 511–519.

    Google Scholar 

  17. Levien, L., Prewitt, C.T., and Weidner, D.J. (1980) Structures and Elastic Properties of Quartz at Pressure, Am.Mineral., 65, 920–930.

    Google Scholar 

  18. Peacor, D.R. (1973) High-Temperature Single-Crystal Study of the Cristobalite Inversion, Z. Kristallogr., 138, 274–298.

    Google Scholar 

  19. Tsuchida, Y. and Yagi, T. (1990) New Pressure-Induced Transformations of Silica at Room Temperature, Nature, 347, 267–269.

    Google Scholar 

  20. Levien, L. and Prewitt, C.T. (1981) High-Pressure Crystal Structure and Compressibility of Coesite, Am. Mineral., 66, 324–333.

    Google Scholar 

  21. Hill, R.J., Newton, M.D., and Gibbs, G.V. (1983) A Crystal Chemical Study fo Stishovite, J. Solid State Chem., 47, 185–200.

    Google Scholar 

  22. Sato, Y. (1977) Equation of State of Mantle Minerals Determined through High-Pressure X-Ray Study, in M.H.Manghnani and S.Akimoto (eds.), High-Pressure Research — Applications in Geophysics, Academic Press, New York, 307–323.

    Google Scholar 

  23. Park, K.T., Terakura, K., and Matsui, Y. (1988) Theoretical Evidence for a New Ultra-High-Pressure Phase of SiO2, Nature, 336, 670–672.

    Google Scholar 

  24. Keskar, N.R., and Chelikowsky, J.R. (1992) Negative Poisson Ratios in Crystalline SiO2 from First-Principles Calculations, Nature, 358, 222–224.

    Google Scholar 

  25. Holmquist, S.B. (1961) Conversion of Quartz to Tridymite, J. Am. Ceram. Soc., 44, 82–86.

    Google Scholar 

  26. Kato, K., and Nukui, A. (1976) Die Kristallstruktur des monoklinen Tief-Tridymite, Acta Cryst., B32, 2486–2491.

    Google Scholar 

  27. Baur, W.H., (1977) Silicon-Oxygen Bond Lengths, Bridging Angles Si-O-Si And Synthetic Low Tridymite, Acta Cryst., B33, 2615–2619.

    Google Scholar 

  28. Matsui, Y. and Matsui, M. (1988) Molecular Dynamics Studies of Polymorphism of SiO2 at High Pressure: A Possible New Cubic Polymorph with High Density, in S.Ghose, J.M.D.Coey and E.Salje (eds.), Structural and Magnetic Phase Transitions in Minerals, Advances in Physical Geochemistry, vol. 7, Springer-Verlag, New York, pp. 129–140.

    Google Scholar 

  29. Tsuchida, Y., and Yagi, T. (1989) A New Post-Stishovite High-Pressure Polymorph of Silica, Nature, 340, 217–220.

    Google Scholar 

  30. Kingma, K.J., Cohen, R.E., Hemley, R.J. and Mao, H.K. (1995) Transformation of Stishovite to a Dense Phase at Lower-Mantle Pressures, Nature, 374, 243–245.

    Google Scholar 

  31. Cohen, R.E., First-Principles Predictions of elasticity and Phase Transitions in High Pressure SiO2 and Geophysical Implications, in Y. Syono and M.H. Manghnani (eds.), High-Pressure Research: Application to Earth and Planetary Sciences, Terra Scientific Publishing Company (TERRAPUB), Tokyo, 425–431.

  32. Scott, J.F. (1968) Evidence of Coupling between One- And Two-Phonon Excitations in Quartz, Phys. Rev. Lett., 13, 907–910.

    Google Scholar 

  33. Axe, J.D., and Shirane, G. (1970) Study of the α-β Quartz Phase Transformation by Inelastic Neutron Scattering, Phys. Rev., B1, 342–348.

    Google Scholar 

  34. Dolino, G. (1988) Incommensurate Phase Transitions in Quartz and Berlinite, in S.Ghose, J.M.D.Coey and E.Salje (eds.), Structural and Magnetic Phase Transitions in Minerals, Advances in Physical Geochemistry, vol. 7, Springer-Verlag, New York, pp. 17–38.

    Google Scholar 

  35. Young, R.A. (1962) Mechanism of the Phase Transition in Quartz, U.S. Air Force Report No. AFOSR-2569.

  36. Tezuka, Y., Shin, S., and Ishigame, M. (1991) Observation of the Silent Soft Phonon, in β-Quartz by Means of Hyper-Raman Scattering, Phys. Rev. Lett., 66, 2356–2359.

    Google Scholar 

  37. vanTendeloo, G., vanLanduyt, J., and Amelinckx, S. (1976) The α→β Phase Transition in Quartz and AlPO4 as Studied by Electron Microscopy and Diffraction, Phys. Stat. Sol. (a), 33, 723–735.

    Google Scholar 

  38. Wright, A.F., and Lehmann, M.S. (1981) The Structure of Quartz at 25 and 590°C Determined by Neutron Diffraction, J. Solid State Chem., 36, 371–380.

    Google Scholar 

  39. Tsuneyuki, S. (1990) Molecular Dynamics Study of Polymorphs of Silica with First-Principles Interatomic Potentials, PhD Dissertation, University of Tokyo.

  40. Phonon dispersion by the present interatomic potential together with thermal expansivity is also reported by Cowley, E.R., and Gross, J. (1991) Lattice Dynamics of a Pair-Potential Model of α-Quartz, J. Chem. Phys., 95, 8357–8361.

    Google Scholar 

  41. Dorner, B., Grimm, H. and Rzany, H. (1980) Phonon Dispersion Branches in α quartz, J. Phys. C: Solid St. Phys., 13, 6607–6612.

    Google Scholar 

  42. Barron, T.H.K., Huang, C.C., and Pasternak, A. (1976) Interatomic Forces and Lattice Dynamics of α-quartz, J. Phys. C: Solid St. Phys., 9, 3925–3940.

    Google Scholar 

  43. Tsuneyuki, S., Aoki, H., Tsukada, M., and Matsui, Y. (1990) Molecular-Dynamics Study of the α to β Structural Phase Transition of Quartz, Phys. Rev. Lett., 64, 776–779.

    Google Scholar 

  44. Tsuneyuki, S. (1992) Computer Simulation of the α to β Phase Transition of Quartz: Order-Disorder Type or Displacive Type, Comments Cond. Mat. Phys., 16, 125–136.

    Google Scholar 

  45. Hemley, R.J., Jephcoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H. (1988) Pressure-Induced Amorphization of Crystalline Silica, Nature, 334, 52–54.

    Google Scholar 

  46. Tsuneyuki, S., Matsui, Y., Aoki, H., and Tsukada, M. (1989) New pressure-induced structural transformations in silica obtained by computer simulation, Nature, 339, 209–211.

    Google Scholar 

  47. Matsui, Y., and Kawamura, K. (1987) Computer-Experimental Synthesis of Silica with the α-PbO2 Structure, in M.H.Manghnani and Y.Syono (eds.) High Pressure Research in Mineral Physics, Geophysical Monograph 39, (American Geophysical Union, Washington DC), 305–311.

    Google Scholar 

  48. Tsuneyuki, S., Aoki, H., and Matsui, Y. (1991) New Crystal Structures of SiO2 Predicted by Molecular Dynamics Study, in M. Doyama, T. Suzuki, J. Kihara and R. Yamamoto (eds.), Computer Aided Innovation of New Materials, 381–384.

  49. Matsui, Y. and Tsuneyuki, S. (1992) Molecular Dynamics Study of Rutile-CaCl2-Type Phase Transition of SiO2, in Y.Syono and M.H.Manghnani (eds.), High-Pressure Research: Application to Earth and Planetary Sciences, Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp. 433–439.

    Google Scholar 

  50. Parise, J.B., Yeganeh-Haeri, A., Widner, D.J., Jorgensen, J.D., and Saltzberg, M.A. (1994) Pressure-Induced Phase Transition and Pressure Dependnece of Crystal Structure in Low (α) and Ca/Al-Doped Cristobalite, J. Appl. Phys., 75, 1361–1367.

    Google Scholar 

  51. Stolper, E.M., and Ahrens, T.J. (1987) On the Nature of Pressure-Induced Coordination Changes in Silicate Melts and Glasses, Geophys. Res. Lett., 14, 1231–1233.

    Google Scholar 

  52. Williams, Q., and Jeanloz, R. (1988) Spectroscopic Evidence for Pressure-Induced Coordination Changes in Silicate Glasses and Melts, Science 239, 902–905.

    Google Scholar 

  53. Kushiro, I. (1976) Changes in Viscosity and Structure of Melts of NaAlSi2O6 Composition at High Pressures, J. Geophys. Res. 73, 619–634.

    Google Scholar 

  54. Shimizu, N., and Kushiro, I. (1984) Diffusivity of Oxygen in Jadeite and Diopside Melts at High Pressures, Geochim. Cosmochim. Acta, 48, 1295–1303.

    Google Scholar 

  55. Tsuneyuki, S., and Matsui, Y. (1995) Molecular Dynamics Study of Pressure Enhancement of Ion Mobilities in Liquid Silica, Phys. Rev. Lett., 74, 3197–3200.

    Google Scholar 

  56. Angell, C.A., Cheeseman, P.A., and Tamaddon, S. (1982) Pressure Enhancement of Ion Mobilities in Liquid Silicates from Computer Simulation Studies to 800 Kilobars, Science, 218, 885–887; (1983) Water-like Transport Property Anomalies in Liquid Silicates Investigated at High T and P by Computer Simulation Techniques, Bull. Minéral., 106, 87–97.

    Google Scholar 

  57. Angell, C.A., Cheeseman, P.A., and Kadyala, R.R. (1987) Diffusivity and Thermodynamic Properties of Diopside and Jadeite Melts by Computer Simulation Studies, Chemical Geology, 62, 83–92.

    Google Scholar 

  58. Another set of potential parameters for SiO2 is derived from a cluster calculation of H4SiO4 by vanBeest, B.W.H., Kramer, G.J., and vanSanten, R.A. (1990) Force Fields for Silicas and Aluminophosphates Based on Ab Initio Calculations, Phys. Rev. Lett., 64, 1955–1958; Kramer, G.J., Farragher, N.P., van Beest, B.W.H., and van Santen, R.A. (1991) Interatomic Force Fileds for Silicas, Alluminophosphates, and zeolites: Derivation Based on Ab Initio Calculations, Phys. Rev., B43, 5068–5080.

    Article  Google Scholar 

  59. Sarnthein, J., Pasquarello, A., and Car, R. (1995) Structural and Electronic Properties of Liquid and Amorphous SiO2: An Ab Initio Molecular Dynamics Study, Phys. Rev. Lett., 74, 4682–4685; Model of Vitreous SiO2 by an Ab Initio Molecular-Dynamics Quench from the Melt, Phys. Rev., B52, 12690–12695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuneyuki, S. Molecular dynamics simulation of silica with a first-principles interatomic potential. Mol Eng 6, 157–182 (1996). https://doi.org/10.1007/BF00161726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161726

Key words

Navigation