Skip to main content
Log in

A Quantum Chemical Approach to Reactions in Biomolecules

  • Published:
Molecular Engineering

Abstract

In order to overcome the limitations of conventional molecular mechanics and quantum mechanics studies of model systems, we recently proposed a coherent computational scheme, for very large molecules, in which the subsystem that undergoes the most important electronic changes is treated by a semi-empirical quantum chemical method, though the rest of the molecule is described by a classical force field. The continuity between the two subsystems is obtained by a strictly localized bond orbital, which is assumed to have transferable properties determined on model molecules. The computation of the forces acting on the atoms is now operative, giving rise to a hybrid Classical Quantum Force Field (CQFF) which allows full energy minimization and the modelling of chemical changes in large biomolecules.

As illustrative examples we present the proton exchange process in the histidine–aspartic acid system of the catalytic triad of human neutrophil elastase and the inhibition of the charge relay system in the trypsin-BPTI complex. In contrast to a classical force field, the CQFF approach reproduces the crystallographic data quite well. The method also offers the possibility of switching off the electrostatic interaction between the quantum and the classical subsystems allowing us to analyze the various components of the perturbation exerted by the macromolecule in the reactive part. Molecular dynamics confirms a fast proton exchange between the three possible energy wells in HNE. We also explain the inhibition of trypsin by BPTI by a perturbation of the catalytic triad geometry of trypsin in the presence of BPTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. McCammon and S.C. Harvey: Dynamics of Proteins and Nucleic Acids, Cambridge University Press (1987).

  2. M. Karplus: in Modelling of Molecular Structures and Properties, J.L. Rivail, ed., Elsevier, Amsterdam, p. 427 (1990).

    Google Scholar 

  3. W.F. Van Gunsteren and H.J.C. Berendsens: Angew. Chem. Int. Ed. 29, 992 (1990).

    Article  Google Scholar 

  4. H.A. Scheraga: in Advances in Biomolecuar Simulations, R. Lavery, J.L. Rivail and J. Smith, eds., American Institute of Physics, Washington, p. 97 (1991).

    Google Scholar 

  5. K. Rasmussen: in First European Conference on Computer Chemistry, F. Bernardi and J.L. Rivail, eds., American Institute of Physics, Washingtino (1995).

    Google Scholar 

  6. A. Warshel and M. Levitt: J.Mol. Biol. 103, 227 (1976). See also A.Warshel:Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley and Sons, New York (1991).

    Google Scholar 

  7. O. Tapia, F. Colonna, and J.G. Ángyán: J. Chem. Phys. 97, 875 (1990).

    Google Scholar 

  8. M.J. Field, P.A. Bash and M. Karplus: J. Comp. Chem. 11, 700 (1990).

    Article  CAS  Google Scholar 

  9. F. Bernardi, M. Olivucci and M.A. Robb: J. Comp. Chem. 114, 1606 (1992).

    CAS  Google Scholar 

  10. V. Thery, D. Rinaldi, J.L. Rivail, B. Maigret, and G.G. Ferenczy: J. Comp. Chem. 15, 269 (1994).

    Article  CAS  Google Scholar 

  11. J.A. Pople, D.P. Santry and G.A. Segal: J. Chem. Phys. 43, 125 (1965).

    Google Scholar 

  12. S. Bratos: Coll. Int. CNRS (Paris) 82, 287. See also D. Rinaldi, M.F. Ruiz Lopez and J.L. Rivail: J. Chem. Phys. 81, 295 (1984).

  13. D.A. Pearlman, D.A. Case, J.C. Caldwell, G.L. Seibel, U.C. Singh, P.Weiner and P.A. Kollman: AMBER 4.0, University of California, San Franscisco (1991).

    Google Scholar 

  14. V. Thery: Thesis Université de nancy I (1993).

  15. M.A. navia, B.M. McKeever, J.P. Springer, T.Y. Lin, H.R. Williams, E.M. Fluder, C.P. Dorn, and K. Hoogsteen: Proc. Nat. Acad. Sci. USA 86, 7 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. P. Banacky and B. Linder: Biophys. Chem. 13(3), 223–31 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. J.J.P. Stewart: J. Comp. Chem. 10, 209, 221 (1989).

    Google Scholar 

  18. J. Ángyán and G. NáraySzabó: J. Theor. Biol. 103, 349 (1983).

    Article  PubMed  Google Scholar 

  19. A. Warshel: Biochemistry 20(11), 3167–3177 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. D. Voet and J.G. Voet: Biochemistry, Wiley International Edition.

  21. D. Rinaldi, P.E. Hoggan, A. Cartier, K. Baka, G. Monard, A. Mokrane, V. Dillet, and V. Thery: in preparation.

  22. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart: J. Am. Chem. Soc. 107, 3902 (1985).

    Article  CAS  Google Scholar 

  23. DISCOVER: Biosym Technologies, 9685 Scranton Road, San Diego, CA (92121- 4778).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, N., Loos, M., Monard, G. et al. A Quantum Chemical Approach to Reactions in Biomolecules. Molecular Engineering 7, 349–365 (1997). https://doi.org/10.1023/A:1008295506199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008295506199

Navigation