Skip to main content
Log in

Simulation of Nanoparticle Production in Premixed Aerosol Flow Reactors by Interfacing Fluid Mechanics and Particle Dynamics

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The interaction of fluid mechanics and particle dynamics at the very early stages of flame synthesis largely affects the characteristics of the product powder. Detailed simulations provide a better understanding of these processes, which take place in a few milliseconds, and offer the possibility to influence the product characteristics by intelligent selection of the process parameters. The present paper reports on the simulation of titania powder formation by TiCl4 oxidation in an aerosol flow reactor. A commercially available fluid mechanics code is used for the detailed calculation of the fluid flow and the chemical reaction at non-isothermal conditions. This code is then interfaced with a model for aggregate particle dynamics neglecting the spread of the particle size distribution. The simulation shows the onset of the particle formation in the reactor and calculates the dynamic evolution of the aggregate particle size, number of primary particles per aggregate and the specific surface area throughout the reactor. The presented, newly developed calculation technique allows for the first time the simulation of particle formation processes under the authentic, complex conditions as found in actual aerosol reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird R.B., W.E. Stewart & E.N. Lightfoot, 1960. Transport Phenomena. John Wiley & Sons, New York.

    Google Scholar 

  • Fluent User's Guide, Version 4.3, Fluent Inc., 1995. Computational Fluid Dynamic Software, Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766.

  • Johannessen T., S.E, Pratsinis & H. Livbjerg, 1998. Computational fluid-particle dynamics of flame synthesis of alumina particles by coagulation and sintering. Submitted to Chem. Engineer. Sci.

  • Kim K.S. & S.E. Pratsinis, 1989. Modeling and analysis of modi-fied chemical vapor deposition of optical fiber preforms. Chem. Engineer. Sci. 44(11), 2475–2482.

    Google Scholar 

  • Kobata A., K. Kusakabe & S. Morooka, 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J. 37, 347–359.

    Google Scholar 

  • Kruis F.E., K.A. Kusters, S.E. Pratsinis & B. Scarlett, 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagluation and sintering. Aerosol Sci. Tech. 19, 514–526.

    Google Scholar 

  • Okuyama K., D. Huang, J.H. Seinfeld, N. Tani & Y. Kousaka, 1991. Aerosol formation by rapid nucleation in the preparation of SiO2 thin film SiCl4 andO2 gases usingCVDprocess. Chem. Engineer. Sci. 46, 1545–1560.

    Google Scholar 

  • Patankar S.V., 1980. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.

    Google Scholar 

  • Pratsinis S.E., H. Bai, P. Biswas, M. Frenklach & S.V.R. Mastrangelo, 1990. Kinetics of TiCl4 Oxidation. J. Am. Ceram. Soc. 73, 2158–2162.

    Google Scholar 

  • Pratsinis S.E., T.T. Kodas, M.P. Dudukovic & S.K. Friedlander, 1986. Aerosol reactor design: Effect of reactor type and process parameters on product aerosol characteristcis. Ind. Eng. Chem. Process Des. Dev. 25(3), 634–642.

    Google Scholar 

  • Pratsinis S.E. & P.T. Spicer, 1998. Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles. Chem. Engineer. Sci. 53(10), 1861–1868.

    Google Scholar 

  • Schaefer D.W. & A.J. Hurd, 1990. Growth and structure of combustion aerosols. Aerosol Sci. Tech. 12, 876–890.

    Google Scholar 

  • Seinfeld J.H., 1986. Athmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, New York.

    Google Scholar 

  • Stratmann F. & E. Whitby, 1989. Heterogeneous condensation in cooled laminar tube flow: A comparison of two modeling techniques. J. Aerosol Sci. 20(8), 999–1002.

    Google Scholar 

  • Xiong Y. & S.E. Pratsinis, 1993. Formation of agglomerste particles by coagulation and sintering. J. Aerosol Sci. 24(3), 283–313.

    Google Scholar 

  • Xiong Y. & S.E. Pratsinis, 1991. Gas phase production of particles in reactive turbulent flows. J. Aerosol Sci. 22(5), 637–655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schild, A., Gutsch, A., Mühlenweg, H. et al. Simulation of Nanoparticle Production in Premixed Aerosol Flow Reactors by Interfacing Fluid Mechanics and Particle Dynamics. Journal of Nanoparticle Research 1, 305–315 (1999). https://doi.org/10.1023/A:1010025121980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010025121980

Navigation