Skip to main content
Log in

Mathematical modelization of equatorial waves

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Our purpose is to calculate waves propagating along the equator in an oceanic domain and the influence of a characteristic mean equatorial circulation on the nature of these waves. Equations satisfied by perturbations of currents and temperature are of the Navier-Stokes type and have been linearized around a stationary solution. Existence and uniqueness of the solution have been proved. Numerical experiments have been carried out and provided us with time-dependent values. The excited waves are exhibited by Fourier analysis of these time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brossier, F.: ‘Etude numérique d'un problème de Stokes intervenant en Océanographie’, Calcolo 18 (1981), 41–86.

    Google Scholar 

  2. Bryan, K.: ‘A Numerical Method for the Study of the Circulation of the World Ocean’, J. Comp. Phys. 4 (1969), 347–376.

    Google Scholar 

  3. Bryan, K. and Cox, M. D.: ‘The Circulation of the World Ocean: A Numerical Study’, J. Phys. Oceanogr. 2 (1972), 319–335.

    Google Scholar 

  4. Ciarlet, P., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

    Google Scholar 

  5. Colin-Picault: Personal Communication, 1980.

  6. Cox, M. D.: ‘Equatorially Trapped Waves and the Generation of the Somali Current’, Deep Sea Res. 23 (1976), 1139–1152.

    Google Scholar 

  7. Hallock, Z.: ‘On Wind-Excited, Equatorially Trapped waves in the Presence of Mean Currents’,

  8. Jenkins and Watts: Spectral Analysis and its Applications, Holden Day, 1968.

  9. Lighthill, M. J.: ‘Dynamic Response of the Indian Ocean to the Onset of the Southwest Monsoon’, Phil. Trans. Royal Soc. London, A 265 (1969), 45–92.

    Google Scholar 

  10. Lions, J. L. and Magenes, E.: Problèmes aux limites non homogènes, Vol. 1, Dunod, Paris, 1968.

    Google Scholar 

  11. Moore, D. W. and Philander, S. G. H.: ‘Modelling of the Tropical Oceanic Circulation’, The Sea 6 (1977), 319–360.

    Google Scholar 

  12. Necas, J.: Les Méthodes directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.

    Google Scholar 

  13. Philander, S. G. H.: ‘Forced Oceanic Waves’, Rev. Geophys. Space Phys. 16 (1978), 15–45.

    Google Scholar 

  14. Richtmyer, R. D. and Morton, K. W.: Difference Methods for Initial-Value Problems, Wiley, New York, 1967.

    Google Scholar 

  15. Semtner, A. J.: ‘An Oceanic General Circulation Model. Numerical Simulation of Weather and Climate’, Technical Report. No. 9.

  16. Temam, R.: Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

    Google Scholar 

  17. Weisberg, R. H., Miller, L., Horigan, A., and Knauss, J. A.: ‘Velocity Observations in the Equatorial Thermocline during GATE’, Deep Sea Research, GATE Supplement II to 26 (1979), 216–248.

    Google Scholar 

  18. Weisberg, R. H., Horigan, A., and Colin, C.: ‘Equatorially Trapped Rossby-Gravity Wave Propagation in the Gulf of Guinea’, J. Marine Res. 37 (1979), 67–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brossier, F. Mathematical modelization of equatorial waves. Acta Appl Math 5, 37–85 (1986). https://doi.org/10.1007/BF00049169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049169

AMS (MOS) subject classifications (1980)

Key words

Navigation