Skip to main content
Log in

The malate synthase gene of cucumber

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The complete sequences of a full-length cDNA clone and a genomic clone encoding the Cucumis sativus glyoxysomal enzyme malate synthase, have been determined. The sequences have enabled us to identify putative control regions at the 5′ end of the gene, three introns, and possible alternative polyadenylation sites at the 3′ end. The deduced amino acid sequence predicts a polypeptide of 64961 molecular weight, which has 48% identity with that of Escherichia coli. Comparison of the sequence of malate synthase from cucumber with that from E. coli and with other glyoxysomal and peroxisomal enzymes, shows that a conserved C-terminal tripeptide is a common feature of those enzymes imported into microbodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen RD, Trelease RN, Thomas TL: Regulation of isocitrate lyase gene expression in sunflower. Plant Physiol 86: 527–532 (1988).

    Google Scholar 

  2. Armitt S, McCullough W, Roberts CF: Analysis of acetate non utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol 92: 263–282 (1976).

    PubMed  Google Scholar 

  3. Becker WM, Leaver CJ, Weir EM: Regulation of glyoxysomal enzymes during germination of cucumber. Plant Physiol 62: 542–549 (1978).

    Google Scholar 

  4. Beeching JR, Northcote DH: Nucleic acid (cDNA) and amino acid sequences of isocitrate lyase from castor bean. Plant Mol Biol 8: 471–475 (1987).

    Google Scholar 

  5. Beevers H: Microbodies in higher plants. Ann Rev Plant Physiol 30: 159–193 (1979).

    Article  Google Scholar 

  6. Breatnach R, Chambon P: Organisation and expression of eukaryotic split genes coding for proteins. Ann Rev Biochem 50: 349–384 (1981).

    Article  PubMed  Google Scholar 

  7. Brown JWS: A catalogue of splice junctions and putative branch point sequences from plant introns. Nucleic Acids Res 14: 9549–9559 (1986).

    PubMed  Google Scholar 

  8. Byrne C, Stokes HW, Ward KA: Nucleotide sequence of the aceB gene encoding malate synthase in Escherichia coli. Nucleic Acids Res 16: 9342 (1988).

    PubMed  Google Scholar 

  9. Davis LG, Dibner MD, Battey JF: Basic Methods in Molecular Biology. Elsivier, New York (1986).

    Google Scholar 

  10. Dean C, Tamaki S, Dunsmuir P, Favreau M, Katayama C, Dooner H, Bedbrook J: mRNA transcripts of several plant genes are polyadenylated at multiple sites in vivo. Nucl Acids Res 14: 2229–2240 (1986).

    PubMed  Google Scholar 

  11. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programmes for the VAX. Nucleic Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  12. Dunsmuir P, Smith SM, Bedbrook J: The major chlorophyll a/b binding protein of petunia is composed of several polypeptides encoded by a number of distinct nuclear genes. J Mol Appl Genet 2: 285–300 (1983).

    PubMed  Google Scholar 

  13. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Addendum Analyt Biochem 137: 266–267 (1984).

    Google Scholar 

  14. Ghosh PK, Reddy VB, Piatak M, Lebowitz P, Wiesmann SM: Determination of RNA sequences by primer directed synthesis and sequencing of their cDNA transcripts. Meth Enzymol 65: 580–595 (1980).

    PubMed  Google Scholar 

  15. Gould JG, Keller G-A, Subramani S: Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Bio 105: 2923–2931 (1987).

    Article  Google Scholar 

  16. Gould JG, Keller G-A, Subramani S: Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 107: 897–905 (1988).

    Article  PubMed  Google Scholar 

  17. Gut H, Matile P: Apparent induction of key enzymes of the glyoxylate acid cycle in senescent barley leaves. Planta 176: 548–550 (1988).

    Google Scholar 

  18. Hanley BA, Schuler MA: Plant intron sequences: Evidence for distinct groups of introns. Nucleic Acids Res 16: 7159–7176 (1988).

    PubMed  Google Scholar 

  19. Huang AHC, Trelease RN, Moore TS: Plant Peroxisomes. Academic Press, New York (1983).

    Google Scholar 

  20. Joshi CP: An inspection of the domain between putative TATA box and translation start site in 70 plant genes. Nucleic Acids Res 15: 6643–6653 (1987).

    PubMed  Google Scholar 

  21. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res 15: 9627–9641 (1987).

    PubMed  Google Scholar 

  22. King HB, Casselton LA: Genetics and function of isocitrate lyase in Coprinus. Mol Gen Genet 157: 319–325 (1977).

    Article  PubMed  Google Scholar 

  23. Koller WM, Kindl: Glyoxylate cycle enzymes of the glyoxysomal membrane from cucumber cotyledons. Arch Biochem Biophys 181: 236–248 (1977).

    PubMed  Google Scholar 

  24. Kornberg HL: The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99: 1–11 (1966).

    PubMed  Google Scholar 

  25. Kozak M: Compilation of the sequences upstream from the translation start site in eukaryotic mRNAs. Nucleic Acids Res 12: 857–872 (1984).

    PubMed  Google Scholar 

  26. Laporte DC, Thorsness PE, Koshland DE: Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. J Biol Chem 260: 10563–10568 (1985).

    PubMed  Google Scholar 

  27. Maloy SR, Nunn W: Genetic regulation of the glyoxylate shunt in Escherichia coli. J Bacteriol 149: 173–180 (1982).

    PubMed  Google Scholar 

  28. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  29. Marriot KM, Northcote DH: The influence of abscisic acid, adenosine 3′, 5′ cyclic phosphate and gibberellic acid on the induction of isocitrate lyase activity in the endosperm of germinating castor bean seeds. J Exp Bot 28: 219–225 (1977).

    Google Scholar 

  30. Martin C, Beeching JR, Northcote DH: Changes in levels of transcripts in endosperm of castor beans treated with exogenous gibberellic acid. Planta 162: 68–76 (1984).

    Google Scholar 

  31. Matsuoko M, McFadden BA: Isolation, hyperex-pression and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli. J Bacteriol 170: 4528–4536 (1988).

    PubMed  Google Scholar 

  32. Maxam AM, Gilbert W: A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560–564 (1983).

    Google Scholar 

  33. Miyazawa S, Osumi T, Hashimoto T, Ohno K, Miura S, Fujiki Y: Peroxisome targeting signal of rat liver acyl-Coenzyme A oxidase resides at the carboxy terminus. Mol Cell Biol 9: 83–91 (1989).

    PubMed  Google Scholar 

  34. Montminy MR, Bilezikjan LM: Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328: 175–178 (1987).

    Article  PubMed  Google Scholar 

  35. Mori H, Nishimura M: Glyoxysomal malate synthetase is specifically degraded in microbodies during greening of pumpkin cotyledons. FEBS Lett 244: 163–166 (1989).

    Article  Google Scholar 

  36. Mundy J, Chua NH: Abscisic acid and water stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286 (1988).

    PubMed  Google Scholar 

  37. Newton RP, Brown ED In: Hormones, Receptors and Cellular Interactions in Plants, pp. 115–153. Cambridge University Press (1986).

  38. Nguyen T, Zelechowska M, Foster V, Bergmann H, Verma DPS: Primary structure of the soybean nodulin-35 gene encoding uricase II localised in the peroxisomes of uninfected cells of nodules. Proc Natl Acad Sci USA 82: 5040–5044 (1985).

    Google Scholar 

  39. Potempa LA, Galsky AG: Confirmation of the presence of adenosine 3′, 5′-cyclic monophosphate in lettuce seeds. C R Acad Sci 275: 1987–1995 (1973).

    Google Scholar 

  40. Proudfoot NJ, Brownlee GG: 3′ non-coding sequence in eukaryotic messenger RNA. Nature 263: 211–214 (1976).

    PubMed  Google Scholar 

  41. Rodriguez D, Dommes J, Northcote DH: Effect of abscisic and gibberellic acids on malate synthase transcripts in germinating castor bean seeds. Plant Mol Biol 9: 227–235 (1987).

    Google Scholar 

  42. Sachs MM, Dennis ES, Gerlach WL, Peacock WJ: Two alleles of maize alcohol dehydrogenase 1 have 3′ structural and poly(A) addition polymorphisms. Genetics 113: 449–467 (1986).

    Google Scholar 

  43. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  44. Sassone-Corsi P: Cyclic AMP induction of early adeno-virus promoters involves sequences required for E1A transactivation. Proc Natl Acad Sci USA 85: 7192–7196 (1988).

    PubMed  Google Scholar 

  45. Smith SM, Leaver CJ: Glyoxysomal malate synthase of cucumber: molecular cloning of a cDNA and regulation of enzyme synthesis during germination. Plant Physiol 81: 762–767 (1986).

    Google Scholar 

  46. Tassi F, Restivo FM, Puglisi PP, Cacco G: Effect of glucose on glutamate dehydrogenase and acid phosphatase and its reversal by cyclic adenosine 3′ 5′ monophosphate in single cell cultures of Asparagus officinalis. Physiol Plant 60: 61–64 (1984).

    Google Scholar 

  47. Trelease RN: Biogenesis of glyoxysomes. Ann Rev Plant Physiol 35: 321–347 (1984).

    Google Scholar 

  48. Volokita M, Sommerville CR: The primary structure of spinach glycolate oxidase deduced from the DNA sequence of the cDNA clone. J Biol Chem 262: 15825–15828 (1987).

    PubMed  Google Scholar 

  49. Walden R, Leaver CJ: Synthesis of chloroplast proteins during germination and early development of cucumber. Plant Physiol 67: 1090–1096 (1981).

    Google Scholar 

  50. Wier EM, Reizman H, Grienbenberger JM, Becker WM, Leaver CJ: Regulation of glyoxysomal enzymes during germination of cucumber. Eur J Biochem 112: 469–477 (1980).

    PubMed  Google Scholar 

  51. Yanagisawa S, Izui K, Yamaguchi Y, Shigesada K, Katsuki H: Further analysis of cDNA clones for maize phosphoenolpyruvate carboxylase involved in C4 photosynthesis. FEBS Lett 229: 107–110 (1988).

    Article  PubMed  Google Scholar 

  52. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, I.A., Smith, L.M., Brown, J.W.S. et al. The malate synthase gene of cucumber. Plant Mol Biol 13, 673–684 (1989). https://doi.org/10.1007/BF00016022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016022

Key words

Navigation