Skip to main content
Log in

The current sheet and Joule heating of a slender magnetic tube in the upper photosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Joule heating in a slender magnetic flux tube is investigated. The distribution of the magnetic field and electric sheet current encircling a vertical cylindrical magnetic tube is determined by equating the converging magnetic flux, which results from the converging and downward flow of the granulation, and the dissipative expanding magnetic flux due to Ohmic decay. Here, to ensure the mass flux conservation, an overshooting convective flow pattern resembling recent simulations was assumed. Even with the electrical resistivity from neutral hydrogen, the width of the current sheet was found to be ≈2 km, being much smaller than the tube diameter of ≈ 150 km, either from an exact or approximate (Gaussian) field distribution.

The resultant energy flux density due to Joule heating averaged over the cylindrical cross sectional area, is ≈1 × 109 erg cm-2 s-1 for an assumed photospheric magnetic field of 1500 G. This amount may supply enough energy to heat the temperature minimum region of the flux tube by ΔT = 300 K in accord with observations, though our estimation of the excess radiation loss which should be supplied by the Joule heating to keep ΔT = 300 K is rather uncertain.

A possible role of the Joule heating on spicule formation is briefly discussed together with discussions on the slab geometry, general flow patterns, and non-constant field distributions inside the flux tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, L. S.: 1989, Astrophys. J. 339, 558.

    Google Scholar 

  • Avrett, E. H.: 1985, in B. W. Lites (ed.), Chromospheric Diagnostics and Modelling, National Solar Obs. Conf., Sunspot, New Mexico, p. 67.

  • Cook, J. W. and Ewing, J. A.: 1990, Astrophys. J. 355, 719.

    Google Scholar 

  • Dunn, R. B. and Zirker, J. A.: 1973, Solar Phys. 33, 281.

    Google Scholar 

  • Foing, B. H. and Bonnet, R. M.: 1984, Astrophys. J. 279, 848.

    Google Scholar 

  • Frazier, E. N. and Stenflo, J. O.: 1978, Astron. Astrophys. 70, 789.

    Google Scholar 

  • Grossmann-Doerth, U., Knölker, M., Schüssler, M., and Weisshaar, E.: 1989, in R. J. Rutten and G. Severino (eds.), Solar and Stellar Granulation, Kluwer Academic Press, Dordrecht, p. 481.

    Google Scholar 

  • Harvey, J. W. and Hall, D.: 1975, Bull. Am. Astron. Soc. 7, 459.

    Google Scholar 

  • Hinata, S.: 1983, Solar Phys. 87, 95.

    Google Scholar 

  • Hirayama, T.: 1978, Publ. Astron. Soc. Japan 30, 337.

    Google Scholar 

  • Hirayama, T., Tanaka, K., Watanabe, T., Akita, K., Sakurai, T., and Nishi, K.: 1985, Solar Phys. 95, 281.

    Google Scholar 

  • Ichimoto, K., Hiei, E., and Nakagomi, Y.: 1989, Publ. Astron. Soc. Japan 41, 263.

    Google Scholar 

  • Keller, C. U.: 1990, in J. O. Stenflo (ed.), ‘Solar Photosphere: Structure Convection, and Magnetic Fields’, IAU Symp. 138, 121.

  • Maltby, P., Avrett, E. H., Carlsson, M., Kjeldseth-Moe, O., Kurucz, R. L., and Loeser, R.: 1986, Astrophys. J. 306, 284.

    Google Scholar 

  • Matsuno, K. and Hirayama, T.: 1988, Solar Phys. 117, 21.

    Google Scholar 

  • Moore, R. L.: 1990, Mem. Soc. Astron. Ital. 61, 317.

    Google Scholar 

  • Muller, R.: 1983, Solar Phys. 85, 113.

    Google Scholar 

  • Muller, R.: 1990, in J. O. Stenflo (ed.), ‘Solar Photosphere: Structure Convection, and Magnetic Fields’, IAU Symp. 138, 85.

  • Muller, R. and Keil, S.: 1983, Solar Phys. 87, 243.

    Google Scholar 

  • Nordlund, Å. and Stein, R. F.: 1990, in J. O. Stenflo (ed.), ‘Solar Photosphere: Structure Convection, and Magnetic Fields’, IAU Symp. 138, 191.

  • Oster, L.: 1968, Solar Phys. 3, 543.

    Google Scholar 

  • Schatten, K. H., Mayr, H. G., Omidvar, K., and Maier, E.: 1986, Astrophys. J. 311, 460.

    Google Scholar 

  • Schüssler, M.: 1990, in J. O. Stenflo (ed.), ‘Solar Photosphere: Structure Convection, and Magnetic Fields’, IAU Symp. 138, 161.

  • Solanki, S. K.: 1990, in J. O. Stenflo (ed.), ‘Solar Photosphere: Structure Convection, and Magnetic Fields’, IAU Symp. 138, 103.

  • Spruit, H. C.: 1974, Solar Phys. 34, 277.

    Google Scholar 

  • Spruit, H. C., Nordlund, Å., and Title, A. M.: 1990, Ann. Rev. Astron. Astrophys. 28, 263.

    Google Scholar 

  • Stein, R. F. and Nordlund, Å.: 1989, Astrophys. J. 342, L95.

    Google Scholar 

  • Steiner, O. and Stenflo, J. O.: 1990, in J. O. Stenflo (ed.), ‘Solar Photosphere: Structure Convection, and Magnetic Fields’, IAU Symp. 138, 181.

  • Stenflo, J. O.: 1973, Solar Phys. 32, 41.

    Google Scholar 

  • Suematsu, Y.: 1990, in Y. Osaki and H. Shibahashi (eds.), Progress of Seismology of the Sun and Stars, Lecture Note in Physics, No. 367, Springer-Verlag, p. 211.

  • Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.

    Google Scholar 

  • Zirin, H.: 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, T. The current sheet and Joule heating of a slender magnetic tube in the upper photosphere. Sol Phys 137, 33–50 (1992). https://doi.org/10.1007/BF00146574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146574

Keywords

Navigation