Skip to main content
Log in

Thermal and density structure of polar plumes

I.Analysis of EUV observations with a multilayer Cassegrain telescope

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Normal incidence multilayer coated EUV/XUV optical systems provide a powerful technique for the study of the structure of the solar corona. Such systems permit the imaging of the full solar disk and corona with high angular resolution in narrow wavelength bands that are dominated by a single line or a line multiplet excited over a well defined range of temperatures. We have photometrically analysed, and derived temperature and density information from, images of polar plumes obtained with a multilayer Cassegrain telescope operating in the wavelength interval λ = 171 to 175 Å, which is dominated by FeIX and FeX emission. This observation was obtained in October 1987, and is the first high resolution observation of an astronomical object obtained with normal incidence multilayer optics techniques. We find that photometric data taken from this observation, applied to a simple, semi-empirical model of supersonic solar wind flow, are consistent with the idea that polar plumes are a source of the solar wind. However, we are not able to uniquely trace high speed streams to polar plumes. The temperatures that we observed are typically ∼ 1 500 000 K for both the plumes and the interplume regions, with the plume temperatures slightly higher than those of the surrounding atmosphere. Typical electron densities of the plume and interplume regions, respectively, are 5 × 109 cm−3 and 1 × 108 cm−3 at the limb of the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I. A. and Webb, D. F.: 1978,Solar Phys. 58, 323.

    Google Scholar 

  • Ahmad, I. A. and Withbroe, G. L.: 1977,Solar Phys. 53, 397.

    Google Scholar 

  • Barbee, T. W., Jr.: 1985, in L. Chang and P. C. Gressin (eds.),Synthetic Modulated Structures, Academic Press, New York, p. 331.

    Google Scholar 

  • Barbee, T. W., Jr.: 1989,Proc. SPIE 1159, 638.

    Google Scholar 

  • Bohlin, J. B., Sheeley, N. R., and Tousey, R.: 1978,Space Res. 15, 651.

    Google Scholar 

  • DeForest, C. E.et al.: 1990,Opt. Eng. 30, 1126.

    Google Scholar 

  • Doschek, G. A. and Cowan, R. D.: 1984,Astrophys. J. Suppl. 56, 67.

    Google Scholar 

  • Henke, B. L., Kwok, S. L., Vejio, J. Y., Yamada, H. T., and Young, G. C.: 1984,J. Opt. Soc. Am. BI, 818.

    Google Scholar 

  • Hoover, R. B.et al.: 1988,Kodak Tech Bits, June 1988, p. 1.

  • Hoover, R. B.et al.: 1990a,Proc. SPIE 1343, 175.

    Google Scholar 

  • Hoover, R. B.et al.: 1990b,Opt. Eng. 29, 1281.

    Google Scholar 

  • Hoover, R. B.et al.: 1992,Proc. SPIE 1742, 549.

    Google Scholar 

  • Landini, M. and Monsignori Fossi, B. C.: 1990,Astron. Astrophys. Suppl. Ser. 82, 229.

    Google Scholar 

  • Lindblom, J. F.et al.: 1988,Proc. SPIE 982, 316.

    Google Scholar 

  • Malinovsky, M. and Héroux, L.: 1973,Astrophys. J. 181, 1009.

    Google Scholar 

  • Mewe, R., Gronenschild, E. H. B. M., and van den Oord, G. H. J.: 1985,Astron. Astrophys. Suppl. Ser. 62, 197.

    Google Scholar 

  • Parker, E. N.: 1956,Astrophys J. Phys. 128, 664.

    Google Scholar 

  • Parker, E. N.: 1963,Interplanetary Dynamical Processes, Interscience Publishers, New York.

    Google Scholar 

  • Sime, D.: 1988, private communication.

  • Walker, A. B. C., Jr., Hoover, R. B., and Barbee, T. W., Jr.: 1992a, in J. Linsky (ed.), ‘High Resolution Thermally Differentiated Images of the Chromosphere and Corona’,Advances in Stellar and Solar Coronal Physics, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  • Walker, A. B. C., Jr., Hoover, R. B., and Barbee, T. W., Jr.: 1992b,Proc. SPIE 1742, 500.

    Google Scholar 

  • Walker, A. B. C., Jr., Barbee, T. W., Jr., Hoover, R. B., and Lindblow, J. F.: 1988a,Science 241, 1781.

    Google Scholar 

  • Walker, A. B. C., Jr., Lindblom, J. F., Hoover, R. B., and Barbee, T. W., Jr.: 1988b,J. Physique Colloques CI 49, 175.

    Google Scholar 

  • Walker, A. B. C., Jr.et al.: 1990,Physica Scripta 41, 1053.

    Google Scholar 

  • Withbroe, G. L.: 1986, in E. T. Hanssen, R. M. Wilson, and H. S. Hudson (eds.),Solar Flares and Coronal Physics Using P/OF as a Research Tool, NASA Conf. Publ. 2421, Greenbelt, MD, p. 221.

    Google Scholar 

  • Withbroe, G. L., Feldman, W. C., and Ahluwalia, H. S.: 1991, in A. N. Cox, H. S. Livingston, and H. S. Matthews (eds.),Solar Interior and Atmosphere, University of Arizona Press, p. 1087.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, A.B.C., Deforest, C.E., Hoover, R.B. et al. Thermal and density structure of polar plumes. Sol Phys 148, 239–252 (1993). https://doi.org/10.1007/BF00645089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645089

Keywords

Navigation