Skip to main content
Log in

Advances in alternative DNA delivery techniques

  • Review Papers
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

This review describes recent advances in alternative DNA-delivery techniques with particular emphasis on silicon carbide fibers, intact tissue electroporation, electrophoresis and microinjection. The advantages/disadvantages of each method along with a historical overview and theory of practice are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Baki AA, Saunders JA, Matthews BF & Pittarelli GW (1990) DNA uptake during electroporation of germinating pollen grains. Plant Sci. 70: 181–190

    Google Scholar 

  • Abdullah R, Cocking EC & Thompson JA (1986) Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Biotechnology 4: 1087–1090

    Google Scholar 

  • Ahokas H (1989) Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor. Appl. Genet. 77: 469–472

    Google Scholar 

  • Akella V & Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep. 12: 110–117

    Google Scholar 

  • Anonymous (1994) Silicon carbide pokes into DNA. New Scientist 1909: 19

  • Antonelli NM & Stadler J (1990) Genomic DNA can be used with cationic methods for highly efficient transformation of maize protoplasts. Theor. Appl. Genet. 80: 395–401

    Google Scholar 

  • Appel JD, Fasy TM, Kohtz DS & Johnson EM (1988) Asbestos fibers mediate transformation of moneky cells by exogenous plasmid DNA. Proc. Natl. Acad. Sci. 85: 7670–7674

    Google Scholar 

  • Asano Y, Otsuki Y & Ugacki M (1991) Electroporation mediated- and silicon carbide fiber-mediated DNA delivery in Agrostis alba L. (Red top). Plant Sci. 79: 247–252

    Google Scholar 

  • Bajaj YPS (1977) Protoplast isolation, culture and somatic hybridization. In: Reinert J & Bajaj YPS (Eds) Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture (pp 467–495). Springer Verlag, Berlin

    Google Scholar 

  • Barnason A, Armstrong C, Dean D, Deaton R, Fischhoff D, Fromm M, Horsch R, Lavallee B, Maher G, Petersen W & Simms S (1991) Production of transgenic corn plants resistant to the European corn borer. Agronomy Abstract (p 192)

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L & Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol. 18: 301–313

    Google Scholar 

  • Bower R & Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2: 409–416

    Google Scholar 

  • Bradley PM (1979) Micromanipulation of cyanelles and a cyanobacterium into higher plant cells. Physiol. Plant. 46: 293–298

    Google Scholar 

  • Bytebier B, Deboeck F, Greve HD, Van Montagu M & Hernalsteens JP (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc. Natl. Acad. Sci. 84: 5345–5349

    Google Scholar 

  • Cao J, Duan X, McElroy D & Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep. 11: 586–591

    Google Scholar 

  • Capecchi M (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488

    Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA & Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. 90: 11212–11216

    Google Scholar 

  • Chan MT, Chang HH, Ho SL, Tong WF & Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22: 491–506

    Google Scholar 

  • Chasan R (1992) Transforming maize transformation. Plant Cell 4: 1463–1464

    Google Scholar 

  • Chowria G, Akelle V & Lurquin PF (1993) Transformation of peas and lentils by in vivo electroporation of nodal meristems. Western Society of Crop Science Abstracts (p 2)

  • Christou P, Ford TL & Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology 9: 957–962

    Google Scholar 

  • Cocking EC (1960) A method for isolation of plant protoplasts and vacuoles. Nature 187: 962–963

    Google Scholar 

  • Cocking EC (1972) Plant cell protoplasts-isolation and development. Ann. Rev. Plant Physiol. 23: 29–50

    Google Scholar 

  • Constabel F (1990) Medicinal plant biotechnology. Planta Med. 56: 421–425

    Google Scholar 

  • Crossway A, Oakes JV, Irvine JM, Ward B, Knauf VC & Shewmaker CK (1986) Intergration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202: 179–185

    Google Scholar 

  • Dekeyser RA, Claes B, De Rycke RMU, Habets ME, Van Montagu MC & Caplan AB (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2: 591–602

    Google Scholar 

  • DeLaat A & Blaas J (1987) An improved method for protoplasts microinjection suitable for transfer of entire plant chromosomes. Plant Sci. 50: 161–169

    Google Scholar 

  • D'Halluin K, Bonne E, Bossut M, De Beuckeleer M & Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495–1505

    Google Scholar 

  • Dhir SK, Dhir S & Widholm JM (1991) Plantlet regeneration from immature cotyledon protoplasts of soybean (Glycine max L) (Merr.). Plant Cell Rep. 10: 39–43

    Google Scholar 

  • Draper J, Davey MR, Freeman JP, Cocking EC & Cox BJ (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts. Plant Cell Physiol. 23: 451–458

    Google Scholar 

  • Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15: 452–460

    Google Scholar 

  • Finer JJ, Vain P, Jones MW & McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11: 323–328

    Google Scholar 

  • Fraley RT, Rogers SC, Horsch RB, Sanders PR, Flick JS, Fink C, Hoffman N & Sanders P (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. 80: 4803–4807

    Google Scholar 

  • Fromm ME, Taylor LP & Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. 82: 5824–5828

    Google Scholar 

  • Fromm ME, Taylor LP & Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793

    Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J & Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8: 833–839

    Google Scholar 

  • Fujimura T, Sakurai M, Akagi H, Negiski T & Hirose A (1985) Regeneration of rice plants from protoplasts. Plant Tissue Cult. Lett. 2: 74–75

    Google Scholar 

  • Godwin ID, Ford-Lloyd BV & Newbury HJ (1992) In vitro approaches to extending the host-range of Agrobacterium for plant transformation. Aust. J. Bot. 40: 751–763

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams Jr. WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP & Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618

    Google Scholar 

  • Grant JE, Dommisse EM, Christey MC & Conner AJ (1991) Gene transfer to plants using Agrobacterium. In: Murray DR (Ed) Advanced Methods in Plant Breeding and Biotechnology (pp 50–73). CAB International, Oxford, UK

    Google Scholar 

  • Griesbach RJ & Hammond J (1993) Incorporation of the GUS gene into orchids via embryo electrophoresis. Acta. Hort. 336: 165–169

    Google Scholar 

  • Griesbach RJ & Sink KC (1983) Evacuation of mesophyll protoplasts. Plant Sci. Lett. 30: 297–301

    Google Scholar 

  • Griesbach RJ (1985) Advances in the microinjection of higher plant cells. Biotechniques 3: 348–350

    Google Scholar 

  • Griesbach RJ (1987) Chromosome-mediated transformation via microinjection. Plant Sci. 50: 69–77

    Google Scholar 

  • Gurdon J (1977) Methods for nuclear transplantation. Methods of Cell Biology 14: 125–139

    Google Scholar 

  • Hagio T, Blowers AD & Earle ED (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep. 10: 260–264

    Google Scholar 

  • Hess D, Dressler K & Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 72: 233–244

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT & Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Biotechnology 6: 915–920

    Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Wallroth M, Eicholtz D, Rogers SG & Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231

    Google Scholar 

  • Jaenisch R & Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocytes injected with viral DNA. Proc. Natl. Acad. Sci. USA 71: 1250–1254

    Google Scholar 

  • Jefferson RA, Kavanagh TA & Bevan MW (1987) GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907

    Google Scholar 

  • Joersbo M, Jorgensen RB & Olesen P (1990) Transient electropermeabilization of barley (Hordeum vulgare L.) microspores to propidium iodide. Plant Cell Tiss. Org. Cult. 23: 125–129

    Google Scholar 

  • Jones H, Tempelaar MJ & Jones MGK (1987) Recent advances in plant electroporation. Oxford Surveys of Plant Mol. & Cell Biol. 4: 347–357

    Google Scholar 

  • Kaeppler HF & Somers DA (1994) DNA delivery into maize cell cultures using silicon carbide fibers. In: Freeling M & Walbot V (Eds) The Maize Handbook (pp 610–613). Springer Verlag, New York

    Google Scholar 

  • Kaeppler HF, Gu W, Somers DA, Rines HW & Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 8: 415–418

    Google Scholar 

  • Kaeppler HF, Somers DA, Rines HW & Cockburn AF (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 84: 560–566

    Google Scholar 

  • Klein TM, Wolf ED, Wu R & Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73

    Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME & Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc. Natl. Acad. Sci. 85: 8502–8505

    Google Scholar 

  • Klein TM, Kornstein L, Sanford JC & Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91: 440–444

    Google Scholar 

  • Klenchin VA, Sukharen SI, Serov SM, Chernomordik LV & Chizmadzhev YA (1991) Electrically induced DNA uptake by cells in a fast process involving DNA electrophoresis. Biophys. J. 60: 804–811

    Google Scholar 

  • Kloti A, Inglesias VA, Wunn J, Burkhardt PK, Datta SK & Potrykus I (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep. 12: 671–675

    Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M & Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11: 194–200

    Google Scholar 

  • Kranz E & Lorz H (1990) Micromanipulation and in vitro fertilization with single pollen grains of maize. Sex. Plant Reprod. 3: 160–169

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ & Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74

    Google Scholar 

  • Lawrence WA & Davies DR (1985) A method for the microinjection and culture of protoplasts at very low densities. Plant Cell Rep. 4: 33–35

    Google Scholar 

  • Li BJ, Xu XP, Shi HP & Ke XY (1991) Introduction of foreign genes into the seed embryo cells of rice by electro-injection and the regeneration of transgenic rice plants. Sci. China 34: 923–930

    Google Scholar 

  • Li L, Qu R, de Kochko A, Fauquet C & Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep. 12: 250–255

    Google Scholar 

  • Lindsey K (1992) Genetic manipulation of crop plants. J. Biotechnol. 26: 1–28

    Google Scholar 

  • Lorz H, Baker B & Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 199: 178–182

    Google Scholar 

  • Lorz H, Paszkowski J, Dierks-Ventling C & Potrykus I (1981) Isolation and characterization of cytoplasts and miniprotoplasts derived from protoplasts of cultured cells. Physiol. Plant. 53: 385–391

    Google Scholar 

  • Lu G & Ferl RJ (1992) Site-specific oligodeoxynucleotide binding to maize Adh1 gene promoter represses Adh1-GUS gene expression in vivo. Plant Mol. Biol. 19: 715–723

    Google Scholar 

  • Luo Z & Wu R (1988) A simple method for the transformation of rice via the pollen tube pathway. Plant Mol. Biol. Rep. 6: 165–174

    Google Scholar 

  • Marsh WA, Maddock SE, Christensen RJ, Jiang XQ, Roth BA, Daywalt MJ, Kulisek ES, Winter KRK, Heiden RA, Wilkinson DR, Dolezal WE & Anderson BM (1993) Coat protein mediated virus resistance in transgenic maize. In Vitro Abstract 92A

  • Matthews BF, Abdul-Baki AA & Saunders JA (1990) Expression of a foreign gene in electroporated pollen grains of tobacco. Sex. Plant Reprod. 3: 147–151

    Google Scholar 

  • McKnight TD, Lillis MT & Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8: 439–445

    Google Scholar 

  • Mishra KP, Joshua DC & Bhatia CR (1987) In vitro electroporation of tobacco pollen. Plant Sci. 52: 135–139

    Google Scholar 

  • Morikawa H & Yamada Y (1985) Capillary microinjection into protoplasts and intranuclear localization of injected materials. Plant Cell Physiol. 26: 229–236

    Google Scholar 

  • Morrish F, Songstad DD, Armstrong CL & Fromm M (1993) Microprojectile bombardment: A method for the production of transgenic cereal crop plants and the functional analysis of genes. In: Hiatt A (Ed) Transgenic Plants Fundamentals and Applications (pp 133–171). Marcel Dekker, New York

    Google Scholar 

  • Murry LE, Elliot LG, Capitant SA, West JA, Hanson KK, Scarafia L, Johnston S, DeLuca-Flaherty C, Nichols S, Cunanan D, Dietrich PS, Mettler IJ, Dewald S, Warnick DA, Rhodes C, Sinibaldi RM & Brunke KJ (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic virus. Biotechnology 11: 1559–1564

    Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G & Sala F (1987) Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol. Biol. 8: 363–367

    Google Scholar 

  • Neuhaus G, Spangeberg G, Mittelsten-Scheid O & Schweizer HG (1987) Transgenic rape seed plants obtained by the microinjection of DNA into microspore derived embyoids. Theor. Appl. Genet. 75: 30–36

    Google Scholar 

  • Oard JH, Paige DF, Simmonds JA & Gradziel TM (1990) Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol. 92: 334–339

    Google Scholar 

  • Oard J (1993) Development of an airgun device for particle bombardment. Plant Cell Tiss. Org. Cult. 33: 247–250

    Google Scholar 

  • Paszkowski J, Shilito RD, Saul M, Mandak V, Hohn T, Hohn B & Potrykus I (1984) Direct gene transfer to plants. EMBO J. 3: 2717–2722

    Google Scholar 

  • Penza R, Akella V & Lurquin PF (1992) Transient expression and histological localization of a GUS chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13: 576–579

    Google Scholar 

  • Potrykus I, Paszkowski J, Saul NW, Negrutiu I & Shillito RD (1987) Direct gene transfer to plants: facts and future. In: Green CE, Somers DA, Hackett WP & Biesboer DD (Eds) Plant Tissue and Cell Culture (pp 298–302). Alan R. Liss Inc, New York

    Google Scholar 

  • Potrykus I, Saul M, Paskowski J & Shillito RD (1985) Direct gene transfer into protoplasts of a graminaceous monocot. Mol. Gen. Genet. 199: 183–188

    Google Scholar 

  • Potrykus I (1991) Gene transfer to plants. Assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 205–225

    Google Scholar 

  • Prioli LM & Sondahl MR (1989) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Biotechnology 7: 589–594

    Google Scholar 

  • Reich TJ, Iyer VN & Miki BL (1986b) Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmids. Biotechnology 4: 1001–1004

    Google Scholar 

  • Reich TJ, Iyer VN, Scobie B & Miki BL (1986a) A detailed procedure for the intranuclear microinjection of plant protoplasts. Can. J. Bot. 64: 1255–1258

    Google Scholar 

  • Rhodes CA, Lowe KS & Ruby KL (1988a) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Biotechnology 6: 56–60

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D & Detmer JJ (1988b) Genetically transformed maize plants from protoplasts. Science 24: 204–207

    Google Scholar 

  • Russell JA, Roy MK & Sanford JC (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98: 1050–1056

    Google Scholar 

  • Russell-Kikkert J (1993) The Biolistic PDS-1000/He device. Plant Cell Tiss. Org. Cult. 33: 221–226

    Google Scholar 

  • Sahi SV, Chilton MD & Chilton WS (1990) Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. 87: 3879–3883

    Google Scholar 

  • Sanders LC & Lord EM (1989) Directed movement of latex particles in the gynoecia of three species of flowering plants. Science 243: 1606–1608

    Google Scholar 

  • Shillito RD, Carswell GK, Johnson CM, DiMaio JJ & Harms CT (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Biotechnology 7: 581–587

    Google Scholar 

  • Shillito RD, Saul MW, Paskowski J, Muller M & Potrykus I (1985) High efficiency direct gene transfer to plants. Biotechnology 3: 1099–1103

    Google Scholar 

  • Shimamoto K, Terada R, Izawa T & Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276

    Google Scholar 

  • Simmonds J, Stewart P & Simmonds D (1992) Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA. Physiol. Plant. 85: 197–206

    Google Scholar 

  • Somers DA, Rines HW, Gu W, Kaeppler HF & Bushnell WR (1992) Fertile, transgenic oat plants. Biotechnology 10: 1589–1594

    Google Scholar 

  • Songstad DD, Hairston BM & Armstrong CL (1993a) Stable transformation of maize by microprojectile bombardment of immature embryos. Agronomy Abstract (p 183)

  • Songstad DD, Halaka FG, DeBoer DL, Armstrong CL, Hinchee MAW, Ford-Santino CG, Brown SM, Fromm ME & Horsch RB (1993b) Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell Tiss. Org. Cult. 33: 195–201

    Google Scholar 

  • Songstad DD, Lowe KL, Betz SR & Cabrera-Ponce JL (1992) Callus cultures as alternative target tissues in microprojectile-mediated transformation of maize. Agronomy Abstracts (p 198)

  • Spencer TM, Gordon-Kamm WJ, Daines RJ, Start WG & Lemaux PG (1990) Bialaphos selection of stable transformants from maize cell cultures. Theor. Appl. Genet. 79: 625–631

    Google Scholar 

  • Steinbiss H & Stabel P (1983) Protoplasts derived tobacco cells can survive capillary microinjection of the fluorescent dye Luciefer Yellow. Protoplasma 116: 223–227

    Google Scholar 

  • Takebe I, Labib G & Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58: 318–320

    Google Scholar 

  • Takeuchi Y, Dotson M & Keen NT (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol. Biol. 18: 835–839

    Google Scholar 

  • Thompson JA, Abdullah R & Cocking EC (1986) Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci. 47: 123–134

    Google Scholar 

  • Tomes DT, Weissinger AK, Ross M, Higgins R, Drummond BJ, Schaaf S, Malone-Schoneberg J, Staebell M, Flynn P, Anderson J & Howard J (1990) Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol. Biol. 14: 261–268

    Google Scholar 

  • Toriyama KF, Arimoto Y, Uchimiya H & Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Biotechnology 6: 1072–1074

    Google Scholar 

  • Umbeck P, Johnson G, Barton K & Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5: 263–266

    Google Scholar 

  • Vain P, Keen N, Murillo J, Rathus C, Nemes C & Finer JJ (1993a) Development of the particle inflow gun. Plant Cell Tiss. Org. Cult. 33: 237–246

    Google Scholar 

  • Vain P, McMullen MDM & Finer JJ (1993b) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84–88

    Google Scholar 

  • Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and crop plants. J. Plant Physiol. 128: 193–218

    Google Scholar 

  • Vasil V, Castillo AM, Fromm ME & Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10: 667–674

    Google Scholar 

  • Verpoorte R, van der Heijden R & Schripsema J (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J. Nat. Prod. 56: 186–207

    Google Scholar 

  • Wallin A, Glimeluis G & Erikson T (1978) Enucleation of plant protoplasts by cytochalasin B. Z. Pflanzenphysiol 87: 333–340

    Google Scholar 

  • Walters DA, Vetsch CS, Potts DE & Lundquist RC (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18: 189–200

    Google Scholar 

  • Wan Y & PG Lemaux (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104: 37–48

    Google Scholar 

  • Watanabe M & Yamaguchi H (1988) The methods for isolation of cytoplasts in several crop plants. Japan J. Breed. 38: 43–52

    Google Scholar 

  • Weeks JT, Anderson OD & Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077–1084

    Google Scholar 

  • Zaghmout OMF & Trolinder NL (1993) Simple and efficient method for directly electroporating Agrobacterium plasmid DNA into wheat callus cells. Nucleic Acid Res. 21: 1048

    Google Scholar 

  • Zimmerman U (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 175–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Songstad, D.D., Somers, D.A. & Griesbach, R.J. Advances in alternative DNA delivery techniques. Plant Cell Tiss Organ Cult 40, 1–15 (1995). https://doi.org/10.1007/BF00041112

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041112

Key words

Navigation