Skip to main content
Log in

Transient quasi-static gas flow through a rigid porous medium with double porosity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The highly compressible fluid flow through a three-scales rigid porous medium (pore, fracture, macroscopic sample) is investigated using a homogenization method. The macroscopic description is strongly dependent on the separation of the different scales, and three cases are considered. The pores either play the role of a compressible fluid reservoir, introduce a memory effect, or are ignored, respectively. The homogenization result is compared to classical phenomenological models that are available in the case of slightly compressible fluids. Pseudo-steady state models are shown to give a rough description of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C*:

gas compressibility coefficient

f:

subscript for the fractures

F :

nonlinear function

h :

positive integer

ĩ :

identity tensor

k :

subscript taking on the values p for the pores and f for the fractures

\(\tilde k_{{\text{p,}}} \tilde k_{\text{f}} \) :

particular solutions for the velocity fields in the pores and the fractures, respectively

\(\tilde K_{{\text{p,}}} \tilde K_{\text{f}} \) :

pore and fracture permeability tensors, respectively

l,l′,l″ :

characteristic lengths for the pore scale, the fracture scale and the macroscopic medium, respectively

m :

positive integer

n,n′ :

pore porosity and fracture porosity, respectively

n′ :

normal unit vector

p:

subscript for the pores

P 0 :

initial pressure

P p,P f :

pore and fracture pressures, respectively

q :

interporosity flow

Q :

dimensionless number

r :

positive integer

s :

characteristic coefficient of a fractured rock

S :

Strouhal number

t,T :

time variables for the pores and the fractures, respectively

T p,T f :

characteristic times for the pores and the fractures, respectively

u p,u f :

pore and fracture fluid displacements, respectively

v p,v f :

pore and fracture fluid velocities, respectively

v p k :

order of magnitude ofV k , due to the macroscopic pressure gradient

v t k :

order of magnitude ofv k , due to the temporal change of pressure

x, x′, x″ :

space variables for the pore, fracture and macroscopic scales, respectively

α,Β,γ :

ratios between the different characteristic lengths

γ, γ′ :

boundaries of the pores and the fractures, respectively

δ:

Laplace operator

∇:

gradient operator

ε :

small parameter

λ,Μ :

fluid viscosities

ρ0:

initial density

ρ p,ρf:

pore and fracture densities, respectively

Τ :

particular solution for the pressure

Τ p,Τf:

characteristic times for the pores and the fractures, respectively

Ω :

pulsation

Ω, Ω′:

periods at the pore and fracture scales, respectively

Ωp, Ω′sp, Ω′f :

parts of the period occupied by the pores, the solid plus the pores and the fractures

ΦΩ, 〈ΦΩ′ :

volume averages of the quantityΦ on Ω, Ω′, respectively

Φeff :

particular volume average on Ω′

References

  • Arbogast, T., Douglas, J., and Hornung, U.: 1990, Derivation of the double porosity of single-phase flow via homogenization theory,SIAM J. Math. Anal. 21(4), 823–836.

    Google Scholar 

  • Auriault, J. L.: 1983, Effective macroscopic description for heat conduction in periodic composites,J. Heat Mass Transfer,26(6), 861–869.

    Google Scholar 

  • Auriault, J. L.: 1991, Heterogeneous medium. Is an Equivalent macroscopic description possible?Int. J. Eng. Sci 29(7), 785–795.

    Google Scholar 

  • Auriault, J. L. and Boutin, C.: 1992, Deformable porous Media with double porosity. Quasi-statics I: coupling effects,Transport in Porous Media 7, 63–82.

    Google Scholar 

  • Auriault, J. L. and Boutin, C.: 1993, Deformable porous media with double porosity. Quasi-statics II: memory effects,Transportin Porous Media 10, 153–169.

    Google Scholar 

  • Auriault, J. L. and Boutin, C.: 1994, Deformable porous media with double porosity. III: Acoustics,Transportin Porous Media 14, 143–162.

    Google Scholar 

  • Auriault, J. L. and Royer, P.: 1993a, Double conductivity media: a comparison between phenomenological and homogenization approaches,Int. J. Heat Mass Transfer 36(10), 2613–2621.

    Google Scholar 

  • Auriault, J. L. and Royer, P.: 1993b, Ecoulement d'un gaz dans un milieu poreux à double porosité,C. R. Acad. Sci. Paris ser 2 (II) 431–436.

    Google Scholar 

  • Auriault, J. L., Strzelecki, T., Bauer, J., and He, S.: 1990, Porous deformable media saturated by a very compressible fluids: Quasi-staticsEur. J. Mech. A/Solids 9(4), 373–392.

    Google Scholar 

  • Barenblatt, G. I.: 1963, On certain boundary value problems for the equations of seepage of liquid in fissured rocks,PMM,27(2), 348–350.

    Google Scholar 

  • Barenblatt, G. I., Zheltov, Iu., and Kochina, I. N.: 1960, Basic concept in the theory of seepage of homogeneous liquids in fissured rocks,PMM,24(5), 852–864.

    Google Scholar 

  • Barenblatt, G. I., Entov, V. M., and Ryzhik, V. M.: 1990,Theory of Fluid Flows through Natural Rocks, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bensoussan, A., Lions J. L., and Papanicolaou G. C.: 1978,Asymptotic Analysis for Periodic Structures, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Bibby, R.: 1981, Mass transport of solutes in dual-porosity media,Water Resour. Res. 1075–1081.

  • Chen, Z. X.: 1989, Transient flow of slightly compressible fluids through double-porosity, double-permeability systems — A state of the art review,Transport in Porous Media 4, 147–184.

    Google Scholar 

  • Chen, Z. X.: 1990, Analytical solutions for the double-porosity, double-permeability and layered systems,J. Petrol. Sci. Eng. 5, 1–24.

    Google Scholar 

  • Gringarten, A. C.: 1984, Interpretation of tests in fissured and multilayered reservoirs with double porosity behavior: theory and practice,J. Petrol. Technol. Distinguished Authors Series 4, 549–464.

    Google Scholar 

  • Hornung, U. and Showalter, R. E.: 1990, Diffusion models for fractured media,J. Math. Anal. Appl. 147, 69–80.

    Google Scholar 

  • Levy, T.: 1990, Filtration in a porous fissured rock. Influence of the fissure connexity,Eur. J. Mech. B/Fluids 9(4), 309–327.

    Google Scholar 

  • Levy T. and Sanchez-Palencia, E.: 1975, On boundary conditions for fluid flow in porous media,Int. J. Engng. Sci. 13, 923–940.

    Google Scholar 

  • Royer, P. and Auriault, J. L.: 1992, Very compressible fluid flow through a porous rigid medium with double porosity,Studia Geot. Mech. 13(1–2), 65–77.

    Google Scholar 

  • Strzelecki, T., Bauer, J., and Auriault, J. L.: 1993, Constitutive equations of a gas-filled two phase medium,Transport in Porous Media 10, 197–202.

    Google Scholar 

  • Sanchez-Palencia, E.: 1990, Non homogeneous media and vibration theory,Lecture Notes in Physics 127, Springer, Berlin.

    Google Scholar 

  • Van Golf-Racht, T. D.: 1982,Fundamentals of Fractured Reservoir Engineering, Elsevier, New York.

    Google Scholar 

  • Warren, J. O. and Root, P. J.: 1963, The behaviour of naturally fractured reservoirs,Soc. Petrol. Eng. J., 254–255.

  • Zimmerman, R. W., Chen, G., Hadgu, T., and Bodvarsson, G. S.: 1993, A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow,Water Resour. Res. 29(7), 2127–2137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer, P., Auriault, JL. Transient quasi-static gas flow through a rigid porous medium with double porosity. Transp Porous Med 17, 33–57 (1994). https://doi.org/10.1007/BF00624049

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00624049

Key words

Navigation