Skip to main content
Log in

Validation of the Slow Compressional Wave in Porous Media: Comparison of Experiments and Numerical Simulations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We perform numerical simulation of ultrasonic experiments on poroelastic samples, in which Biot's slow compressional wave had been observed. The simulation is performed using OASES modeling code, which allows to compute elastic wave fields in layered poroelastic media. Modeled were the experiments of Plona (1980), Rasolofosaon (1988), and our own measurements. In all the three situations, a good agreement between experiment and simulations has been observed. This further confirms the fact that Biot's theory of poroelasticity, on which the simulations were based, adequately describes the behavior of the porous materials under investigations at ultrasonic frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. and Richards, P. G.: 1980, Quantitative Seismology: Theory and Methods, W. H. Freeman and Co.

  • Berryman, J. G.: 1980, Confirmation of Biot's theory, Appl. Phys. Lett. 37, 382–384.

    Google Scholar 

  • Biot, M. A.: 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range, J. Acoust. Soc. Am. 28, 168–178.

    Google Scholar 

  • Biot, M. A.: 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am. 28, 179–191.

    Google Scholar 

  • Biot, M. A.: 1962, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33, 1482–1498.

    Google Scholar 

  • Carcione, J. M.: 1996, Full frequency-range transient solution for compressional waves in a fluidsaturated viscoacoustic porous medium, Geophys. Prosp. 44, 99–129.

    Google Scholar 

  • Dai, N., Vafidis, A. and Kanasewich, E. R.: 1995,Wave propagation in heterogeneous, porous media: a velocity-stress, finite difference method, Geophysics 60, 327–340.

    Google Scholar 

  • Deresiewicz, H. and Skalak, R.: 1963, On uniqueness in dynamic poroelasicity, Bull. Seismol. Soc. Am. 53, 783–788.

    Google Scholar 

  • Dutta, N. C.: 1980, Theoretical analysis of observed second bulk compressional wave in a fluidsaturated porous solid at ultrasonic frequencies, Appl. Phys. Lett. 37, 898–900.

    Google Scholar 

  • Hassanzadeh, S.: 1991, Acoustic modeling in fluid-saturated porous media, Geophysics 56, 424–435.

    Google Scholar 

  • Johnson, D. L., Koplik, J. and Dashen, R.: 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176, 379–402.

    Google Scholar 

  • Johnson, D. L. and Plona, T.: 1982, Acoustic slow waves and the consolidation transition, J. Acoust. Soc. Am. 72, 556–565.

    Google Scholar 

  • Kelder, O. and Smeulders, D. M. J.: 1995, Propagation and damping of compressional waves in porous rocks: theory and experiments, Ann. Internat. Mtg., 64th Annual Meeting, Society of Exploration Geophysicists, Expanded Abstracts, pp. 675–678.

  • Plona, T.: 1980, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett. 36, 259–261.

    Google Scholar 

  • Rasolofosaon, P. N. J.: 1988, Importance of the interface hydraulic condition on the generation of second bulk compressional wave in porous media, Appl. Phys. Lett. 52, 780–782.

    Google Scholar 

  • Schmidt, H. and Tango, G.: 1986, Efficient global matrix approach to the computation of synthetic seismograms, Geophys. J. R. Astr. Soc. 84, 331–359.

    Google Scholar 

  • Smeulders, D. M. J., Eggels, R. L. G. M. and van Dongen, M. E. H.: 1992, Dynamic permeability: reformulation of theory and new experimental and numerical data, J. Fluid Mech. 245, 211–227.

    Google Scholar 

  • Stern, M, Bedford, A. and Millwater, H. R., 1985, Wave reflection from a sediment layer with depthdependent properties, J. Acoust. Soc. Am. 77, 1781–1788.

    Google Scholar 

  • Teng, Y.-C.: 1990, Finite element results of the slow compressional wave in a porous medium at ultrasonic frequencies, J. Appl. Phys. 68, 4335–4337.

    Google Scholar 

  • Van der Grinten, J. G. M., Van Dongen, M. E. H. and Van der Kogel, H.: 1985, A shock-tube technique for studying pore-pressure propagation in a dry and water-saturated porous medium, J. Appl. Phys. 58, 2937–2942.

    Google Scholar 

  • Van der Grinten, J. G. M., Van Dongen, M. E. H. and Van der Kogel, H.: 1987, Strain and pore pressure propagation in a water-saturated porous medium, J. Appl. Phys. 62, 4682–4687.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevich, B., Kelder, O. & Smeulders, D.M.J. Validation of the Slow Compressional Wave in Porous Media: Comparison of Experiments and Numerical Simulations. Transport in Porous Media 36, 149–160 (1999). https://doi.org/10.1023/A:1006676801197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006676801197

Navigation