Skip to main content
Log in

Differential effects of ammonium and nitrate on three heathland species

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Arnica montana and Cirsium dissectum, typical of species-rich heathlands and acidic grasslands, have declined rapidly in The Netherlands in recent years. Field surveys suggest that the decline is caused by soil acidification as a result of enhanced atmospheric N and S deposition. Therefore, the survival, growth and development of these species were studied in a water culture experiment, using nutrient solutions which differed both in mineral nitrogen form and in ammonium concentration. For comparison, the performance of a third, acid tolerant species, Calluna vulgaris, was studied. The results showed that both Arnica and Cirsium performed better using nitrate than when using ammonium as a sole nitrogen source, whereas ammonium toxicity became apparent when ammonium concentrations were raised above 100 µM. Ammonium toxicity was expressed by an increase in mortality of Arnica plants with increasing ammonium concentrations and by a reduction of biomass in Arnica and Cirsium. Furthermore, cation concentrations in both roots and shoots decreased when ammonium was supplied as a nitrogen source. In contrast, Calluna showed optimal development when using ammonium as a sole nitrogen source. In this species, only root biomass was negatively affected by high ammonium concentrations. The ecological implications of these preferences are discussed in relation to soil acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R. & Heil, G. W. 1993. Heathlands: patterns and processes in a changing environment. Kluwer Academic Publishers. Dordrecht.

    Google Scholar 

  • Allen, S. E. 1989. Chemical analysis of ecological materials. Blackwell Scientific Publications. Oxford.

    Google Scholar 

  • Atkinson, C. J. 1985. Nitrogen acquisition in four co-existing species from an upland acidic grassland. Physiologia Plantarum 63: 375-387.

    Google Scholar 

  • Bobbink, R., Boxman, A. W., Fremstad, E., Heil, G., Houdijk, A. L. F. M. & Roelofs, J. G. M. 1992. Critical loads for nitrogen eutrophication of terrestrial and wetland ecosystems based upon changes in vegetation and fauna. Pp. 111-159. In: Grennfelt, P. & Thörnelöf, E. (eds), Critical loads for nitrogen. Nordic Council of Ministers, Copenhagen.

    Google Scholar 

  • Boxman, A. W., Krabbendam, H., Bellemakers, M. J. S. & Roelofs, J. G. M. 1991. Effects of ammonium and aluminium on the development and nutrition of Pinus nigrain hydroculture. Environ. Pollut. 73: 119-136.

    Google Scholar 

  • Caporn, S. J. M., Song, W., Read, D. J. & Lee, J. A. 1995. The effect of repeated nitrogen fertilization on mycorrhizal infection in heather [Calluna vulgaris(L.) Hull] New Phytol. 129: 605-609.

    Google Scholar 

  • Chapin, F. S. I. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233-260.

    Google Scholar 

  • De Graaf, M. C. C., Verbeek, P. J. M., Cals, M. J. R. & Roelofs, J. G. M. 1994. Restoration of acidified and eutrofied speciesrich heaths and acidic grasslands 1990-1992. Report Department of Ecology, University of Nijmegen. In Dutch.

  • De Graaf, M. C. C., Bobbink, R., Verbeek, P. J. M. & Roelofs, J. G. M. 1997. Aluminium toxicity and tolerance in three heathland species. Water Air Soil Pollut. 98: 229-241.

    Google Scholar 

  • De Smidt, J. T. 1981. Dutch heathland vegetations. Wetenschappelijke mededelingen K.N.N.V.144, Hoogwoud, The Netherlands. In Dutch.

    Google Scholar 

  • Dueck, T. A. & Elderson, J. 1992. Influence of NH3 and SO2 on the growth and competitive ability of Arnica montanaL. and Viola caninaL.. New Phytol. 122: 507-514.

    Google Scholar 

  • Falkengren-Grerup, U. 1995. Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102: 305-311.

    Google Scholar 

  • Falkengren-Grerup, U. & Lakkenborg-Kristensen, H. 1994. Importance of ammonium and nitrate to the performance of herb-layer species from deciduous forests in southern Sweden. Environ. Exper. Bot. 34: 31-38.

    Google Scholar 

  • Fennema, F. 1992. SO2 and NH3 deposition as possible cause for the extinction of Arnica montanaL.. Water Air Soil Pollut. 62: 325-336.

    Google Scholar 

  • Fenner, M. 1987. Seedlings. New Phytol. 106(suppl.): 35-47.

    Google Scholar 

  • Gigon, A. & Rorison, I. H. 1972. The response of some ecologically distinct plant species to nitrate-and to ammonium-nitrogen. J. Ecol. 60: 93-102.

    Google Scholar 

  • Hayati, A. A. & Proctor, M. C. F. 1990. Plant distribution in relation to mineral nutrient availability and uptake on a wet-heath site in South-west England. J. Ecol. 78: 134-151.

    Google Scholar 

  • Heijne, B. 1995. Effects of acid rain on vesiculair-arbusculair mycorrhiza of herbaceous plants in dry heathland. PhD-thesis. University of Utrecht, The Netherlands.

    Google Scholar 

  • Heijne, B., Dueck, T. A., Van der Eerden, L. J. & Heil, G. W. 1994. Effects of atmospheric ammonia and ammonium sulphate on vesicular-arbuscular mycorrhizal colonization in three heathland species. New Phytol. 127: 685-696.

    Google Scholar 

  • Heijne, B., Hofstra, J. J., Heil, G. W., Van Dam, D. & Bobbink, R. 1992. Effect of the air pollution component ammonium sulphate on the VAM infection rate of three heathland species. Plant Soil 144: 1-12.

    Google Scholar 

  • Heil, G. W. & Diemont, W. H. 1983. Raised nutrient levels change heathland into grassland. Vegetatio 53: 113-120.

    Google Scholar 

  • Houdijk, A. L.F.M., Verbeek, P. J.M., Van Dijk, H.F.G. & Roelofs, J. G. M. 1993. Distribution and decline of endangered heathland species in relation to the chemical composition of the soil. Plant Soil 148: 137-143.

    Google Scholar 

  • Jenelten, U. & Feller, U. 1992. Mineral nutrition of Arnica montanaL. and Arnica chamissonisssp. foliosa maguire: differences in the cation acquisition. J. Plant Nutr. 15: 2351-2361.

    Google Scholar 

  • Kempers, A. J. & Zweers, A. 1986. Ammonium determination in soil extracts by the salicylate method. Comm. Soil Sci. Plant Anal. 17: 715-723.

    Google Scholar 

  • Marschner, H. 1991. Mechanisms of adaptations of plants to acid soils. Plant and Soil 134: 1-20.

    Google Scholar 

  • Marschner, H. 1995. Mineral nutrition of higher plants. Second edition. Academic press. London.

    Google Scholar 

  • Marschner, H., Häussling, M. & George, E. 1991. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies(L.) Karst.]. Trees 5: 14-21.

    Google Scholar 

  • Mehrer, I. & Mohr, H. 1989. Ammonium toxicity: description of the syndrome in Synapsis albaand the search for its causation. Physiol. Plantarum 77: 545-554.

    Google Scholar 

  • Mickel, S., Brunschön, S. & Fangmeier, A. 1991. Effects of nitrogen-nutrition on growth and competition of Calluna vulgaris(L.) Hull and Deschampsia flexuosa(L.) Trin.. Angewandte Botanik 65: 359-372.

    Google Scholar 

  • Nihlgård, B. 1985. The ammonium hypothesis - An additional explanantion to the forest dieback in Europe. Ambio 14: 2-8.

    Google Scholar 

  • Pearson, J. & Stewart, G. R. 1993. The deposition of atmospheric ammonia and its effects on plants. New Phytol. 125: 283-305.

    Google Scholar 

  • Pegtel, D. M. 1994. Habitat characteristics and the effect of various nutrient solutions on growth and mineral nutrition of Arnica montanaL grown on natural soil. Vegetatio 114: 109-121.

    Google Scholar 

  • Peterson, L. A., Stang, E. J. & Dana, M. N. 1988. Blueberry response to NH4-N and NO3-N. J. Amer. Soc. Horticul. Sci. 113: 9-12.

    Google Scholar 

  • Raven, J. A. & Smith, F. A. 1976. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 76: 415-431.

    Google Scholar 

  • Redbo-Torstensson, P. 1994. The demographic consequences of nitrogen fertilization of a population of sundew, Drosera rotundifolia. Acta Bot. Neerl. 43: 175-188.

    Google Scholar 

  • Roelofs, J. G. M. 1986. The effect of airborne sulphur and nitrogen deposition on aquatic and terrestrial heathland vegetation. Experientia 42: 372-377.

    Google Scholar 

  • Roelofs, J. G. M., Bobbink, R., Brouwer, E. & De Graaf, M. C. C. 1996. Restoration ecology of aquatic and terrestrial vegetation on non-calcareous sandy soils in The Netherlands. Acta Bot. Neerl. 45: 517-541.

    Google Scholar 

  • Rorison, I. H. 1986. The response of plants to acid soils. Experimentia 42: 357-362.

    Google Scholar 

  • Runge, M. & Rode, M. W. 1991. Effects of soil acidity on plant associations. Pp. 183-202 In: Ulrich, B. & Sumner, M. E. (eds), Soil acidity. Springer-Verlag, Berlin.

    Google Scholar 

  • Salsac, L., Chaillou, S., Morot-Gaudry, J.-F., Lesaint, C. & Jolivet, E. 1987. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem. 25: 805-812.

    Google Scholar 

  • Stewart, C. N. Jr. & Nilsen, E. T. 1992. Drosera rotundifoliagrowth and nutrtion in a natural population with special reference to the significance of herbivory. Can. J. Bot. 70: 1409-1416.

    Google Scholar 

  • Tickle, A., Fergusson, M. & Drucker, G. 1995. Acid rain and nature conservation in Europe. A preliminary study of protected areas at risk from acidification. World Wide Fund for Nature, Gland, Switzerland.

    Google Scholar 

  • Troelstra, S. R., Wagenaar, R. & Smant, W. 1995. Nitrogen utilization by plant species from acid heathland soils. I. Comparison between nitrate and ammonium nutrition at constant low pH. J. Exper. Bot. 46: 1103-1112.

    Google Scholar 

  • Ulrich, B. 1983. Soil acidity and its relation to acid deposition. Pp. 127-146. In: Ulrich, B. & Pankrath, J. (eds), Effects of accumulation of air pollutants in forest ecosystems. Reidel Publ. Com., Dordrecht.

    Google Scholar 

  • Van Breemen, N., & Van Dijk, H. F. G. 1988. Ecosystem effects of atmospheric deposition of nitrogen in TheNetherlands. Environ. Pollut. 54: 249-274.

    Google Scholar 

  • Van Dam, D., Van Dobben, H. F., Ter Braak, C. F. J. & De Wit, T. 1986. Air pollution as a possible cause for the decline of some phanerogamic species in the Netherlands. Vegetatio 65: 47-52.

    Google Scholar 

  • Van Dijk, H. F. G. & Roelofs, J. G. M. 1988. Effects of excessive ammonium deposition on the nutritional status and condition of Pine needles. Physiol. Plantarum 73: 494-501.

    Google Scholar 

  • Van Dijk, H. F. G., Creemers, R. C. M., Rijniers, J. P. L. W. M. & Roelofs, J.G.M. 1989. Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse. I. Effects on the soils. Environ. Pollut. 62: 317-336.

    Google Scholar 

  • Van Dijk, H. F. G., De Louw, M. H. J., Roelofs, J. G.M. & Verburgh, J. J. 1990. Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse. II. Effects on the trees. Environ. Pollut. 63: 41-59.

    Google Scholar 

  • Van Dobben, H. 1991. Integrated effects (low vegetation). In: Heij, G. J. & Schneider, T. (eds), Acidification research in the Netherlands. Final report of the Dutch priority programme on acidification. Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Graaf, M.C.C., Bobbink, R., Roelofs, J.G.M. et al. Differential effects of ammonium and nitrate on three heathland species. Plant Ecology 135, 185–196 (1998). https://doi.org/10.1023/A:1009717613380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009717613380

Navigation