Skip to main content

Advertisement

Log in

Interactions between exogenous and endogenous retroviruses

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Retroviruses are distinguished from other viruses by several features. Notably, some retroviruses are present as normal elements in the genomes of virtually all vertebrates (endogenous proviruses). Others are exogenous, i.e. horizontally transmitted agents, many of which cause fatal diseases. The endogenous retroviruses are genetically transmitted and to a large extent their significance is uncertain. However, there is evidence suggesting that they contribute to the development of diseases in several animal species. Most importantly, some endogenous retroviruses are capable of interacting with exogenous counterparts through a variety of different mechanisms with serious consequences to the host. Conversely, others are advantageous in that they protect against exogenous retroviruses. In this review various types of interactions between endogenous and exogenous retroviruses are discussed, including receptor interference, recombination, phenotypic mixing, immunological interactions and heterologoustrans-activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson SA, Stephenson JR. Widespread natural occurrence of high titers of neutralizing antibodies to a specific class of endogenous mouse type-C virus. Proc Natl Acad Sci USA 71:1957–1961;1974.

    Google Scholar 

  2. Acha-Orbea H. Retroviral superantigens. Chem Immunol 55:65–86;1992.

    Google Scholar 

  3. Baccala R, Kono DH, Walker S, Balderas RS, Theofilopoulos AN. Genomically imposed and somatically modified human thymocyte Vβ gene repertoires. Proc Natl Acad Sci USA 88:2908–2912;1991.

    Google Scholar 

  4. Banki K, Maceda J, Hurley E, Ablonczy E, Mattson DH, Szegedy L, Hung C, Perl A. Human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kDa protein: A possible autoantigen for HTLV-1 gag-reactive autoantibodies. Proc Natl Acad Sci USA 89:1939–1943;1992.

    Google Scholar 

  5. Best S, Le Tissier P, Towers G, Stoye JP. Positional cloning of the mouse retrovirus restriction geneFv1. Nature 382:826–829;1996.

    Google Scholar 

  6. Buller RS, Ahmed A, Portis JL. Identification of two forms of an endogenous murine retroviralenv gene linked to theRmcf locus. J Virol 61:29–34;1987.

    Google Scholar 

  7. Buller RS, Sitbon M, Portis JL. The endogenous mink cell focus-forming (MCF) gp70 linked to theRmcf gene restricts MCF virus replication in vivo and provides partial resistance to erythroleukemia induced by Friend murine leukemia virus. J Exp Med 167:1535–1546;1988.

    Google Scholar 

  8. Buller RS, Wehrly K, Portis JL, Chesebro B. Host genes conferring resistance to a central nervous system disease induced by a polytropic recombinant Friend murine retrovirus. J Virol 64:493–498;1990.

    Google Scholar 

  9. Canivet M, Hoffman AD, Hardy D, Sernatinger J, Levy JA. Replication of HIV-1 in a wide variety of animal cells following phenotypic mixing with murine retroviruses. Virology 178:543–551;1990.

    Google Scholar 

  10. Chakrabarti R, Hofman FM, Pandey R, Mathes LE, Roy-Burman P. Recombination between feline exogenous and endogenous retroviral sequences generates tropism for cerebral endothelial cells. Am J Pathol 144:348–358;1994.

    Google Scholar 

  11. Coffin J. Structure of the retroviral genome. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumor Viruses, Vol. 1. New York, Cold Spring Harbor Laboratory, 261–368;1984.

    Google Scholar 

  12. Coffin J. Endogenous viruses. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumor Viruses, Vol. 1. New York, Cold Spring Harbor Laboratory, 1109–1203;1984.

    Google Scholar 

  13. Cornetta K, Morgan RA, Anderson WF. Safety issues related to retroviral-mediated gene transfer in humans. Hum Gene Ther 2:5–14;1991.

    Google Scholar 

  14. Cullen BR. Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56:375–394;1992.

    Google Scholar 

  15. Delwart EL, Panganiban AT. Role of reticuloendotheliosis virus envelope glycoprotein in superinfection interference. J Virol 63:273–280;1989.

    Google Scholar 

  16. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R, Bacher J, Zsebo KM, Nienhuis AW. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176:1125–1135;1992.

    Google Scholar 

  17. Eickbush TH. Transposing without ends: The non-LTR retrotransposable elements. New Biol 4:430–440;1992.

    Google Scholar 

  18. Fine DL, Arthur LO. Expression of natural antibodies against endogenous and horizontally transmitted macaque retroviruses in captive primates. Virology 112:49–61;1981.

    Google Scholar 

  19. Finnegan DJ. Retroviruses and transposable elements — which came first? Nature 302:105–106;1983.

    Google Scholar 

  20. Finnegan DJ. Wandering retroviruses? Curr Biol 4:641–643;1994.

    Google Scholar 

  21. Gardner MB. Genetic control of retroviral disease in aging wild mice. Genetica 91:199–209;1993.

    Google Scholar 

  22. Gardner MB, Kozak CA, O'Brien SJ. The Lake Casitas wild mouse: Evolving genetic resistance to retroviral disease. Trends Genet 7:22–27;1991.

    Google Scholar 

  23. Gayama S, Vaupel BA, Kanagawa O. Sequence heterogeneity of murine acquired immunodeficiency syndrome virus: The role of endogenous virus. Int Immunol 7:861–868;1995.

    Google Scholar 

  24. Gitlin SD, Dittmer J, Reid RL, Brady JN. The molecular biology of human T-cell leukemia viruses. In: Cullen BR, ed. Human Retroviruses. Oxford, Oxford University Press, 159–192;1993.

    Google Scholar 

  25. Golovkina TV, Chervonsky A, Dudley JP, Ross SR. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–645;1992.

    Google Scholar 

  26. Golovkina TV, Jaffe AB, Ross SR. Coexpression of exogenous and endogenous mouse mammary tumor virus RNA in vivo results in viral recombination and broadens the virus host range. J Virol 68:5019–5026;1994.

    Google Scholar 

  27. Hanafusa H, Miyamoto T, Hanafusa T. A cell-associated factor essential for formation of an infectious form of Rous sarcoma virus. Proc Natl Acad Sci USA 66:314–321;1970.

    Google Scholar 

  28. Held W, Waanders GA, Shahkov AN, Scarpellino L, Acha-Orbea H, MacDonald HR. Super-antigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell 74:529–540;1993.

    Google Scholar 

  29. Hlubinova K, Kovarík A, Prachar J, Simkovic D, Feldsamová A. An attempt to induce formation of antibodies against endogenous retrovirus BP 6 in syngenic rats. Neoplasma 39:287–290;1992.

    Google Scholar 

  30. Hodgson CP, Chakraborty AK, Boman BM. Retroviral vectors for gene therapy and transgenics. Curr Opin Ther Patents 3:223–235;1993.

    Google Scholar 

  31. Horwitz MS, Boyce-Jacino MT, Faras AJ. Novel human endogenous sequences related to human immunodeficiency virus type 1. J Virol 66:2170–2179;1992.

    Google Scholar 

  32. Hu W-S, Temin HM. Retroviral recombination and reverse transcription. Science 250:1227–1233;1990.

    Google Scholar 

  33. Hügin AW, Vacchio MS, Morse HC III. A virus-encoded ‘superantigen’ in a retrovirus-induced immunodeficiency syndrome of mice. Science 252:424–427;1991.

    Google Scholar 

  34. Ihle JN, Hanna MG Jr, Schäfer W, Hunsmann G, Bolognesi DP, Hüper G. Polypeptides of mammalian oncornaviruses. Virology 63:60–67;1975.

    Google Scholar 

  35. Inaguma Y, Yoshida T, Ikeda H. Scheme for the generation of a truncated endogenous murine leukaemia virus, theFv-4 resistance gene. J Gen Virol 73:1925–1930;1992.

    Google Scholar 

  36. Indraccolo S, Günzburg WH, Leib-Mösch C, Erfle V, Salmons B. Identification of three human sequences with viral superantigen-specific primers. Mamm Genome 6:339–344;1995.

    Google Scholar 

  37. Jackson JB, MacDonald KL, Cadwell J, Sullivan C, Kline WE, Hanson M, Sannerud KJ, Stramer SL, Fildes NJ, Kwok SY, Sninsky JJ, Bowman RJ, Polesky HF, Balfour HH Jr, Osterholm MT. Absence of HIV infection in blood donors with indeterminate Western blot tests for antibody to HIV-1. N Engl J Med 322:217–222;1990.

    Google Scholar 

  38. Johnson MS, McClure MA, Feng D-F, Gray J, Doolittle RF. Computer analysis of retroviralpol genes: Assignment of enzymatic functions to specific sequences and homologies with non-viral enzymes. Proc Natl Acad Sci USA 83:7648–7652;1986.

    Google Scholar 

  39. Karapetian O, Shakhov AN, Kraehenbuhl J-P, Acha-Orbea H. Retroviral infection of neonatal Peyer's patch lymphocytes: The mouse mammary tumor virus model. J Exp Med 180:1511–1516;1994.

    Google Scholar 

  40. Kitagawa M, Kamisaku H, Aizawa S, Sado T. Bone marrow transplantation fromFv-4-resistant donors rescues Friend leukemia virus-infected mice from leukemia: A model of bone marrow transplantation therapy against retroviral infection. Leukemia 8:2200–2206;1994.

    Google Scholar 

  41. Kitagawa M, Aizawa S, Kamisaku H, Ikeda H, Hirokawa K, Sado T. Cell-free transmission ofFv-4 resistance gene product controlling Friend leukemia virus-induced leukemogenesis: A unique mechanism for interference with viral infection. Blood 86:1557–1563;1995.

    Google Scholar 

  42. Kozak CA, Ruscetti S. Retroviruses in rodents. In: Levy JA, ed. The Retroviridae, Vol. 1. New York, Plenum Press, 405–481;1992.

    Google Scholar 

  43. Krieg AM, Gourley MF, Perl A. Endogenous retroviruses: Potential etiologic agents in auto-immunity. FASEB J 6:2537–2544;1992.

    Google Scholar 

  44. Krieg AM, Gourley MF, Klinman DM, Perl A, Steinberg AD. Heterogenous expression and coordinate regulation of endogenous retroviral sequences in human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 8:1991–1998;1992.

    Google Scholar 

  45. Labrecque N, McGrath H, Subramanyam M, Huber BT, Sékaly R-P. Human T cells respond to mouse mammary tumor virus-encoded superantigen: Vβ restriction and conserved evolutionary features. J Exp Med 177:1735–1743;1993.

    Google Scholar 

  46. Lal RB, Rudolph DL, Coligan JE, Brodine SK, Roberts CR. Failure to detect evidence of human T-lymphotropic virus (HTLV) type I and type II in blood donors with isolatedgag antibodies to HTLV-I/II. Blood 80:544–550;1992.

    Google Scholar 

  47. Landau NR, Page KA, Littman DR. Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65:162–169;1991.

    Google Scholar 

  48. Laurence J, Hodtsev AS, Posnett DN. Superantigen implicated in dependence of HIV-1 replication in T cells on TCR Vβ expression. Nature 358:255–259;1992.

    Google Scholar 

  49. Lee JC, Ihle JN. Autogenous immunity to endogenous RNA tumor virus: Reactivity of natural immune sera to antigenic determinants of several biologically distinct murine leukemia viruses. J Natl Cancer Inst 55:831–838;1975.

    Google Scholar 

  50. Limjoco TI, Dickie P, Ikeda H, Silver J. TransgenicFv-4 mice resistant to Friend virus. J Virol 67:4163–4168;1993.

    Google Scholar 

  51. Linial M, Blair D. Genetics of retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumor Viruses, Vol 1. New York, Cold Spring Harbor Laboratory, 649–783;1984.

    Google Scholar 

  52. Lock LF, Keshet E, Gilbert DJ, Jenkins NA, Copeland NG. Studies of the mechanism of spontaneous germline ecotropic provirus acquisition in mice. EMBO J 7:4169–4177;1988.

    Google Scholar 

  53. Löwer R, Boller K, Hasenmaier B, Korbmacher C, Müller-Lantzsch N, Löwer J, Kurth R. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA 90:4480–4484;1993.

    Google Scholar 

  54. Löwer R, Tönjes RR, Korbmacher C, Kurth R, Löwer J. Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. J Virol 69:141–149;1995.

    Google Scholar 

  55. Lusso P, Veronese FM, Ensoli B, Franchini G, Jemma C, DeRocco SE, Kalyanaraman VS, Gallo RC. Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science 247:848–852;1990.

    Google Scholar 

  56. Marrack P, Winslow GM, Choi Y, Scherer M, Pullen A, White J, Kappler JW: The bacterial and mouse mammary tumor virus superantigens; two different families of proteins with the same functions. Immunol Rev 131:79–92;1993.

    Google Scholar 

  57. Martinelli SC, Goff SP. Rapid reversion of a deletion mutation in Moloney murine leukemia virus by recombination with a closely related endogenous provirus. Virology 174:135–144;1990.

    Google Scholar 

  58. McDougall AS, Terry A, Tzavaras T, Cheney C, Rojko J, Neil JC. Defective endogenous proviruses are expressed in feline lymphoid cells: Evidence for a role in natural resistance to subgroup B feline leukemia viruses. J Virol 68:2151–2160;1994.

    Google Scholar 

  59. Miyazawa M, Fujisawa R. Physiology and pathology of host immune responses to exogenous and endogenous murine retroviruses — from gene fragments to epitopes. Tohoku J Exp Med 173:91–103;1994.

    Google Scholar 

  60. Mullins JI, Hoover EA. Molecular aspects of feline leukemia virus pathogenesis. In: Gallo RC, Wong-Staal F, eds. Retrovirus Biology and Human Disease. New York, Marcel Dekker, 87–116;1990.

    Google Scholar 

  61. Nishimura N, Kato S, Ishikawa H, Takano T. Monoclonal antibodies recognisingpol andenv proteins of mammalian retroviruses. Intervirology 34:112–116;1992.

    Google Scholar 

  62. Nowinski RC, Kaehler SL. Antibody to leukemia virus: Widespread occurrence in inbred mice. Science 185:869–871;1974.

    Google Scholar 

  63. Oldstone MBA. Molecular mimicry and autoimmune disease. Cell 50:819–820;1987.

    Google Scholar 

  64. Pandey R, Ghosh AK, Kumar DV, Bachman BA, Shibata D, Roy-Burman P. Recombination between feline leukemia virus subgroup B or C and endogenousenv elements alters the in vitro biological activities of the viruses. J Virol 65:6495–6508;1991.

    Google Scholar 

  65. Payne LN, Pani PK, Weiss RA. A dominant epistatic gene which inhibits cellular susceptibility to RSV(RAV-O). J Gen Virol 13:455–462;1971.

    Google Scholar 

  66. Pozsgay JM, Klyczek KK, Blank KJ. In vivo generation of antigenic variants of murine retroviruses. Virology 173:330–334;1989.

    Google Scholar 

  67. Rasmussen HB, Perron H, Clausen J. Do endogenous retroviruses have etiological implications in inflammatory and degenerative nervous system diseases? Acta Neurol Scand 88:190–198;1993.

    Google Scholar 

  68. Rasmussen HB, Geny C, Deforges L, Perron H, Tourtelotte W, Heltberg A, Clausen J. Expression of endogenous retroviruses in blood mononuclear cells and brain tissue from multiple sclerosis patients. Multiple Sclerosis 1:82–87;1995.

    Google Scholar 

  69. Robinson HL, Astrin SM, Senior AM, Salazar FH. Host susceptibility to endogenous viruses: Defective, glycoprotein-expressing proviruses interfere with infections. J Virol 40:745–751;1981.

    Google Scholar 

  70. Schwartzberg P, Colicelli J, Goff SP. Recombination between a defective retrovirus and homologous sequences in host DNA: Reversion by patch repair. J Virol 53:719–726;1985.

    Google Scholar 

  71. Sheets RL, Pandey R, Klement V, Grant CK, Roy-Burman P. Biologically selected recombinants between feline leukemia virus (FeLV) subgroup A and an endogenous FeLV element. Virology 190:849–855;1992.

    Google Scholar 

  72. Sheets RL, Pandey R, Jen W-C, Roy-Burman P. Recombinant feline leukemia virus genes detected in naturally occurring feline lymphosarcomas. J Virol 67:3118–3125;1993.

    Google Scholar 

  73. Silvestris F, Williams RC Jr, Dammacco F. Autoreactivity in HIV-1 infection: The role of molecular mimicry. Clin Immunol Immunopathol 75:197–205;1995.

    Google Scholar 

  74. Smith DM. Endogenous retroviruses in xenografts (letter). N Engl J Med 328:142–143;1993.

    Google Scholar 

  75. Smith EJ. Endogenous avian leukemia viruses. In: de Boer GF, ed. Avian Leukosis. Boston, Martinus Nijhoff Publishing, 101–120;1987.

    Google Scholar 

  76. Spector DH, Wade E, Wright DA, Koval V, Clark C, Jaquish D, Spector SA. Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. J Virol 64:2298–2308;1990.

    Google Scholar 

  77. Stoye J, Coffin J. Endogenous retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumor Viruses, Vol. 2. New York, Cold Spring Harbor Laboratory, 357–404;1985.

    Google Scholar 

  78. Stuhlmann H, Berg P. Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J Virol 66:2378–2388;1992.

    Google Scholar 

  79. Szabo C, Kim YK, Mark WH. The endogenous ecotropic murine retrovirusesEmv-16 andEmv-17 are both capable of producing new proviral insertions in the mouse genome. J Virol 67:5704–5708;1993.

    Google Scholar 

  80. Temin HM. Origin and general nature of retroviruses. In: Levy JA, ed. The Retroviridae, Vol. 1. New York, Plenum Press, 1–18;1992.

    Google Scholar 

  81. Todaro GJ, Sherr CJ, Benveniste RE. Baboons and their close relatives are unusual among primates in their ability to release nondefective endogenous type C viruses. Virology 72:278–282;1976.

    Google Scholar 

  82. Tribe DE, Reed DL, Lindell P, Kenealy WR, Ferguson BQ, Cybulski R, Winslow D, Waselefsky DM, Petteway SR Jr. Antibodies reactive with human immunodeficiency virusgag-coded antigens (gag reactive only) are a major cause of enzyme-linked immunosorbent assay reactivity in a blood donor population. J Clin Microbiol 26:641–647;1988.

    Google Scholar 

  83. Tumas KM, Poszgay JM, Avidan N, Ksiazek SJ, Overmoyer B, Blank KJ, Prystowsky MB. Loss of antigenic epitopes as the result ofenv gene recombination in retrovirus-induced leukemia in immunocompetent mice. Virology 192:587–595;1993.

    Google Scholar 

  84. Waanders GA, Shakhov AN, Held W, Karapetian O, Acha-Orbea H, MacDonald HR. Peripheral T cell activation and deletion induced by transfer of lymphocyte subsets expressing endogenous or exogenous mouse mammary tumor virus. J Exp Med 177:1359–1366;1993.

    Google Scholar 

  85. Wainberg MA, Halpern MS. Avian sarcomas: Immune responsiveness and pathology. In: de Boer GF, ed. Avian Leukosis. Boston, Martinus Nijhoff Publishing, 131–152;1987.

    Google Scholar 

  86. Weiss R. Experimental biology and assay of RNA tumor viruses. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumor Viruses, Vol. 2. New York, Cold Spring Harbor Laboratory, 209–260;1985.

    Google Scholar 

  87. Wilkinson DA, Mager DL, Leong JC. Endogenous human retroviruses. In: Levy JA, ed. The Retroviridae, Vol. 3. New York, Plenum Press, 465–535;1994.

    Google Scholar 

  88. Williams LM, Cloyd MW. Polymorphic human gene(s) determines differential susceptibility of CD4 lymphocytes to infection by certain HIV-1 isolates. Virology 184:723–728;1991.

    Google Scholar 

  89. Závada J. Viral pseudotypes and phenotypic mixing. Arch Virol 50:1–15;1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, H.B. Interactions between exogenous and endogenous retroviruses. J Biomed Sci 4, 1–8 (1997). https://doi.org/10.1007/BF02255587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255587

Key Words

Navigation