Skip to main content
Log in

Time averages for unpredictable orbits of deterministic systems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In many cases, the orbits of deterministic systems displaying highly irregular oscillations yield smoothly converging time averages. It may happen, however, that these time averages do not converge and themselves display wild oscillations. This is analyzed for heteroclinic attractors and hyperbolic strange attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Frank and T. Stengos, Chaotic dynamics in economic time series, J. Econ. Surveys 2(1988)103–133.

    Google Scholar 

  2. W. Brock, Chaos and complexity in economic and financial science, in:Acting under Uncertainty: Multidisciplinary Conceptions, ed. G. von Fürstenberg (Kluwer, Boston, 1990).

    Google Scholar 

  3. R.M. May, Simple mathematical models with very complicated dynamics, Nature 261(1976)459–467.

    Google Scholar 

  4. L. Glass and M.C. Mackey,From Clocks to Chaos (Princeton University Press, 1988).

  5. O.E. Roessler, Chaos and chemistry, in:Nonlinear Phenomena in Chemical Dynamics, ed. C. Vidal and A. Pacault (Springer, Berlin, 1981).

    Google Scholar 

  6. E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20(1963)130–141.

    Google Scholar 

  7. P. Cvitanovic (ed.),Universality in Chaos (Adam Higler, Bristol, 1984).

    Google Scholar 

  8. Hao Bai-Lin (ed.),Chaos (World Scientific, Singapore, 1984).

    Google Scholar 

  9. H. Haken (ed.),Chaos and Order in Nature, Springer Series in Synergetics (Springer, Berlin, 1981).

    Google Scholar 

  10. D. Ruelle,Chaotic Evolution and Strange Attractors (Cambridge University Press, 1989).

  11. R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470 (Springer, Berlin, 1975).

    Google Scholar 

  12. J. Guckenheimer and Ph. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, Berlin, 1983).

    Google Scholar 

  13. J. Guckenheimer and Ph. Holmes, Structurally stable heteroclinic cycles, Math. Proc. Cambridge Phil. Soc. 103(1988)189–192.

    Google Scholar 

  14. M. Eigen and P. Schuster,The Hypercycle: A Principle of Natural Self-organization (Springer, Berlin, 1979).

    Google Scholar 

  15. J. Hofbauer and K. Sigmund,The Theory of Evolution and Dynamical Systems (Cambridge University Press, 1988).

  16. M. Nowak and K. Sigmund, Oscillations in the evolution of reciprocity, J. Theor. Biol. 137(1989)21–26.

    Google Scholar 

  17. J. Maynard Smith,Evolution and the Theory of Games (Cambridge University Press, 1982).

  18. A. Gaunsdorfer, J. Hofbauer and K. Sigmund, On the dynamics of asymmetric games, to appear in Theor. Pop. Biol. (1991)345–357.

  19. G. Kirlinger, Permanence in Lotka-Volterra equations, Math. Biosci. 82(1986)165–191.

    Google Scholar 

  20. A. Gaunsdorfer, Time averages for heteroclinic attractors, SIAM J. Appl. Math., to appear.

  21. R.M. May and W. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29(1975)243–252.

    Google Scholar 

  22. A. Arneodo, P. Coullet and C. Tresser, Occurrence of strange attractors in three dimensional Volterra equations, Phys. Lett. A79(1980)259–263.

    Google Scholar 

  23. P. Schuster, K. Sigmund and R. Wolff, On ω-limits for competition between three species, SIAM J. Appl. Math. 37(1979)49–54.

    Google Scholar 

  24. K. Sigmund, Permanence and heteroclinic cycles for ecological equations,Proc. Conf. on Nonlinear Oscillations, ed. M. Farkas, Budapest (1987).

  25. S. Smale,The Mathematics of Time (Springer, Berlin, 1980).

    Google Scholar 

  26. J.P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(1985).

  27. M. Denker, Ch. Gillenberger and K. Sigmund,Ergodic Theory on Compact Spaces, Springer Lectures in Mathematics 527 (Springer, Berlin, 1976).

    Google Scholar 

  28. J.C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58(1952)116–136.

    Google Scholar 

  29. J.C. Oxtoby,Measure and Category (Springer, New York, 1971).

    Google Scholar 

  30. K. Sigmund, On the space of invariant measures for hyperbolic flows, Amer. J. Math. 94(1972)31–37.

    Google Scholar 

  31. K. Sigmund, Generic properties for invariant measures of Axiom A diffeomorphisms, Inventiones Math. 11(1970)9–109.

    Google Scholar 

  32. K. Sigmund, On the time evolution of statistical states for Anosov systems, Math. Z. 138(1974)183–189.

    Google Scholar 

  33. U. Kirchgraber and D. Stoffer, On the definition of chaos, Z. angew. Math. 69(1989)175–185.

    Google Scholar 

  34. F. Hofbauer, Generic properties of invariant measures for continuous piecewise monotonic transformations, Mh. Math. 106(1988)301–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmund, K. Time averages for unpredictable orbits of deterministic systems. Ann Oper Res 37, 217–228 (1992). https://doi.org/10.1007/BF02071057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02071057

Keywords

Navigation