Skip to main content
Log in

Antineoplastic activity of sterically stabilized alkylphosphocholine liposomes in human breast carcinomas

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

New sterically stabilized liposomes derived from the antitumoragent hexadecylphosphocholine with reduced uptake by the mononuclearphagocyte system and improved antitumor activities were developedand tested. The bilayer of such sterically stabilizedliposomes consists of hexadecylphosphocholine, cholesterol and polyethylene glycol-linkedphosphoethanolamine. The measurement of carbon clearance in miceshows that these stabilized liposomes, in contrast toconventional alkylphosphocholine liposomes, are not largely engulfed bythe mononuclear phagocyte system. Their therapeutic activity onexperimental human breast carcinomas MaTu, MT-1 and MT-3was tested in nude mice. Especially in theMaTu models the sterically stabilized hexadecylphosphocholine liposomes resultedin significantly reduced tumor growth in comparison toconventional hexadecylphosphocholine liposomes or free hexadecylphosphocholine. The enhancedtherapeutic efficacy of sterically stabilized hexadecylphosphocholine liposomes isprobably related to the extended circulation time ofthe formulation and its accumulation in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eibl H, Unger C: Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev 17: 233–242, 1990

    Google Scholar 

  2. Berdel WE: Membrane-interactive lipids as experimental anticancer agents. Br J Cancer 64: 208–211, 1991

    Google Scholar 

  3. Noseda A, Godwin PL, Modest EJ: Effects of antineoplastic ether lipids on model and biological membranes. Biochem Biophys Acta 945: 92–100, 1988

    Google Scholar 

  4. Geilen CC, Haase R, Buchner K, Wieder T, Hucho F, Reutter W: The phospholipid analogue, hexadecylphosphocholine, inhibits protein kinase C in vitro and antagonises phorbol ester-stimulated cell proliferation. Eur J Cancer 27: 1650–1653, 1991

    Google Scholar 

  5. Geilen CC, Haase A, Wieder T, Arndt D, Zeisig R, Reutter W: Phospholipid analogues: side chain-and polar head group-dependent effects on phosphatidylcholine biosynthesis. J Lipid Res 35: 625–632, 1994

    Google Scholar 

  6. Noseda A, White JG, Godwin PL, Jerome WG, Modest EJ: Membrane damage in leukemic cells induced by ether and ester lipids: an electron microscopic study. Exp Mol Pathol 50: 69–83, 1989

    Google Scholar 

  7. Powis G, Seewald MJ, Gratas C, Melder D, Riebow J, Modest EJ: Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res 52: 2835–2840, 1992

    Google Scholar 

  8. Lazenby CM, Thompson M, Hickman JA: Elevation of leukemic cell intracellular calcium by ether lipid SRI 62–834. Cancer Res 50: 3327–3330, 1990

    Google Scholar 

  9. Maurer HR, Hilgard P: Induction of tumor cell differentiation by alkylphosphocholines. In: Eibl H, Hilgard P, Unger C (eds) Alkylphosphocholines: New Drugs in Cancer Chemotherapy, Vol 34, Progress in Experimental Tumor Research, Karger, Basel, 1992, pp 90–97

    Google Scholar 

  10. Berdel WE, Bausert WR, Weltzien HU, Modolell ML, Widman KH, Munder PG: The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of 3-Lewis lung carcinoma. Eur J Cancer 16: 1199–1204, 1980

    Google Scholar 

  11. Grunicke H, Hofmann J: Cytotoxic and cytostatic effects of antitumor agents induced at the plasma membrane level. Pharmac Ther 55: 1–30, 1992

    Google Scholar 

  12. Berger MR, Schmähl D, Eibl HJ: Structure-activity relationship of alkylphosphocholines in methylnitrosourea (MNU)-induced rat mammary carcinoma. J Cancer Clin Oncol 114: 73, 1988

    Google Scholar 

  13. Unger C, Eibl HJ: Hexadecylphosphocholine: Preclinical and the first clinical results of a new antitumor drug. Lipids 26: 1412–1417, 1991

    Google Scholar 

  14. Clavel M, Mauriac L, Vennin P, Namer M, Maugard-Louboutin C, Goupil A, Veyret C, Sindermann H, David M: Topically applied miltefosine (hexadecylphosphocholine) in cutaneous relapses and/or skin metastasized breast cancer: a French multicentric study. Ann Oncol 3(Suppl): 65, 1992

    Google Scholar 

  15. Zeisig R, Jungmann S, Arndt D, Schütt A, Nissen E: Antineoplastic activity in vitro of free and liposomal alkylphosphocholines. Anti-Cancer Drugs 4: 57–64, 1993

    Google Scholar 

  16. Zeisig R, Fichtner I, Arndt D, Jungmann S: Antitumor effect of alkylphosphocholines in different tumor models: use of liposomal preparations. Anti-Cancer Drugs 2: 411–417, 1991

    Google Scholar 

  17. Fichtner I, Zeisig R, Naundorf H, Jungmann S, Arndt D, Asongwe G, Double JA, Bibby MV: Antineoplastic activity of alkylphosphocholines (APC) in human breast carcinomas in vivo and in vitro; use of liposomes. Breast Cancer Res Treat 32: 269–279, 1994

    Google Scholar 

  18. Zeisig R, Jungmann S, Eue E, Daemen T, Arndt D: Cytotoxic effects of alkylphosphocholines or alkylphosphocholine-liposomes and macrophages on tumor cells. Anticancer Res 35: 1785–1790, 1994

    Google Scholar 

  19. Allen TM, Hansen C, Rudledge J: Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 981: 27–35, 1989

    Google Scholar 

  20. Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D: Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070: 187–192, 1991

    Google Scholar 

  21. Blume G, Cevc G: Liposomes for sustained drug release in vivo. Biochim Biophys Acta 1029: 91–97, 1990

    Google Scholar 

  22. Klibanov AL, Maryama K, Torchilin VP, Huang L: Amphiphatic polyethylene-glycols effectively prolong the circulation time of liposomes. FEBS Lett 268: 235–237, 1990

    Google Scholar 

  23. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54: 3352–3356, 1994

    Google Scholar 

  24. Allen TM: The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Advanced Drug Delivery Reviews 13: 285–309, 1994

    Google Scholar 

  25. Huang SK, Mayhew E, Gilani S, Lasic DD, Martin FJ, Papahadjopoulos D: Pharmacokinetics and therapeutics of sterically stabilized liposomes bearing C-26 colon carcinoma. Cancer Res 52: 6774–6781, 1992

    Google Scholar 

  26. Mayhew E, Lasic DD, Babbar S, Martin FJ: Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer 51: 302–309, 1992

    Google Scholar 

  27. Allen TM, Mehra T, Hansen C, Cheen Y: Stealth liposomes: an improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Res 52: 2431–2439, 1992

    Google Scholar 

  28. Kedar E, Braun E, Rutkowski Y, Emanuel N, Barenholz Y: Delivery of cytokines by liposomes. II. Interleukin-2 encapsulated in long-circulating sterically stabilized liposomes: immunomodulatory and anti-tumor activity in mice. J Immunother Emphasis Tumor Immunol 16: 115–124, 1994

    Google Scholar 

  29. Vaage J, Donovan D, Mayhew E, Uster P, Woodle M: Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilized liposomes. Int J Cancer 54: 959–964, 1993

    Google Scholar 

  30. Lasic DD: Doxorubicin in sterically stabilized liposomes. Nature 380: 561–562, 1996

    Google Scholar 

  31. Zeisig R, Eue I, Kosch M, Fichtner I, Arndt D: Preparation and properties of sterically stabilized hexadecylphosphocholine (Miltfosine)-Liposomes and influence of this modification on macrophage activation. Biochim Biophys Acta, accepted for publication

  32. Sternberg B, Gale P, Watts A: The effect of temperature and protein content on the dispersive properties of bR from H. halobium in reconstituted DMPC complexes free of endogenous purple membrane lipids: a freeze-fracture electron microscopy study. Biochim Biophys Acta 980: 117–126, 1989

    Google Scholar 

  33. Sternberg B: Freeze-fracture electron microscopy of liposomes. In: G. Gregoriadis (ed) Liposome Technology CRC Press, Boca Raton, 1992, pp 363–383

    Google Scholar 

  34. Naundorf H, Rewasosa EC, Fichtner I, Büttner B, Becker M, Görlich M: Characterization of two human mammary carcinomas, MT-1 and MT-3, suitable for in vivo testing of ether lipids. Breast Cancer Res Treat 23: 87–98, 1992

    Google Scholar 

  35. Widmaier R, Wildner GP, Papsdorf G, Graffi A: Über eine neue in vitro unbegrenzt wachsende Zellinie, MaTu, von Mammatumorzellen des Menschen. Arch Geschwulstforsch 44: 1–9, 1974

    Google Scholar 

  36. Twentyman PR, Luscombe M: A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British J Cancer 56: 279–285, 1987

    Google Scholar 

  37. Fichtner I, Kniest A, Arndt D: Measurement of carbon clearance in mice as toxicity parameter for liposomal preparations. In vivo 6: 113–118, 1992

    Google Scholar 

  38. Wu N, Da D, Rudoll T, Needham D, Whorton R, Dewhurst M: Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue. Cancer Res 53: 3765–3770, 1993

    Google Scholar 

  39. Lasic DD, Papahadjopoulos D: Liposomes revisited. Science 267: 1275–1276, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, D., Zeisig, R., Eue, I. et al. Antineoplastic activity of sterically stabilized alkylphosphocholine liposomes in human breast carcinomas. Breast Cancer Res Treat 43, 237–246 (1997). https://doi.org/10.1023/A:1005798715192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005798715192

Navigation