Skip to main content
Log in

The effect of water on the formation of strongly bound oxygen on silver surfaces

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Interaction of water with an oxygenated Ag(111) surface leads to an enhancement of the surface restructuring and an activated formation of hydroxyl groups (OH) located stably on the surface and incorporated in the subsurface region, as evidenced by means of reflection electron microscopy (REM) and in situ Raman spectroscopy. Dehydroxylation of OHads at elevated temperatures releases the strongly bound oxygen species labelled Oγ at the surface, and offers an alternative to the energetically less favorable pathway for the direct formation of the Oγ species from molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ullmann,Encyclopedia of Industrial Chemistry, Vol. 21 (Verlag Chemie, Weinheim, 1982) p. 311.

    Google Scholar 

  2. J.F. Walker,Formaldehyde (Reinhold, New York, 1964);

    Google Scholar 

  3. H. Sperber, Chemie-Ing. Techn. 41 (1969) 962.

    Google Scholar 

  4. A. Trillat, Bull. Soc. Chem. III 27 (1902) 797; 29 (1903) 35.

    Google Scholar 

  5. H.B. Uhl and I.H. Cooper, US Patent 2,465,498 (1949).

  6. N.Kh. Valitov and S.M. Lakiza, Russ. J. Phys. Chem. 49 (1975) 1853.

    Google Scholar 

  7. L.N. Kurina and V.P. Morozov, Russ. J. Phys. Chem. 50 (1976) 538.

    Google Scholar 

  8. L. Lefferts, PhD Thesis University Twente, The Netherlands (1987).

  9. C. Rehren, G. Isaac, R. Schlögl and G. Ertl, Catal. Lett. 11 (1991) 253.

    Google Scholar 

  10. C. Rehren, M. Muhler, X. Bao, R. Schlögl and G. Ertl, Z. Phys. Chem. 174 (1991) 11.

    Google Scholar 

  11. X. Bao, J.V. Barth, G. Lehmpfuhl, R. Schuster, Y. Uchida, R. Schlögl and G. Ertl, Surf. Sci. 284 (1993) 14.

    Google Scholar 

  12. X. Bao, B. Pettinger, G. Ertl and R. Schlögl, Ber. Bunsenges. Phys. Chem. 97 (1993) 322.

    Google Scholar 

  13. X. Bao, M. Muhler, B. Pettinger, R. Schlögl and G. Ertl, Catal. Lett. 22 (1993) 215.

    Google Scholar 

  14. B. Pettinger, X. Bao, I.C. Wilcock, M. Muhler, R. Schlögl and G. Ertl, Angew. Chem. 33 (1994) 85.

    Google Scholar 

  15. B. Pettinger, A. Friedrich and U. Tiedemann, J. Electroanal. Chem. 280 (1990) 49.

    Google Scholar 

  16. B. Pettinger, X. Bao, I.C. Wilcock, M. Muhler and G. Ertl, Phys. Rev. Lett. 72 (1994) 1561.

    Google Scholar 

  17. L.N. Kurina, L.I. Novozhenova, L.P. Orlova, L.M. Koval and T.D. Dobrynina, Russ. J. Phys. Chem. 52 (1978) 867.

    Google Scholar 

  18. C.A. Bazilio, W.J. Thomas, U. Ullah and K.E. Hayes, Proc. Roy. Soc. A399 (1985) 181.

    Google Scholar 

  19. M. Bowker, M.A. Barteau and R.J. Madix, Surf. Sci. 92 (1980) 528.

    Google Scholar 

  20. C.T. Au, S. Singh Boparai, M.W. Roberts and R.W. Joyner, J. Chem. Soc. Faraday Trans. I 79 (1983) 1779.

    Google Scholar 

  21. L. Wiedmann, N.L. Wang, R. Jede, L.D. An, O. Ganschow and A. Benninghoven,Secondary Ion Mass Spectroscopy SIMS III, Springer Series Chem. Phys., Vol. 19 (Springer, Berlin, 1982) p. 421.

    Google Scholar 

  22. P.A. Thiel and T.E. Madey, Surf. Sci. Rep. 7 (1987) 211.

    Google Scholar 

  23. N. Iwasaki, Y. Sasaki and Y. Nishina, Surf. Sci. 198 (1988) 524.

    Google Scholar 

  24. A.F. Carley, S. Rassias and M.W. Roberts, Surf. Sci. 135 (1983) 35.

    Google Scholar 

  25. C.T. Au, M.W. Roberts and A.R. Zhu, Surf. Sci. 115 (1982) L117.

    Google Scholar 

  26. B. Afsin, P.R. Davies, A. Pashusky, M.W. Roberts and D. Vincent, Surf. Sci. 284 (1993) 109.

    Google Scholar 

  27. R.L. Kluch and W.W. Mullins, Trans. AIME 242 (1968) 237.

    Google Scholar 

  28. X. Bao, G. Lehmpfuhl, G. Weinberg, R. Schlögl and G. Ertl, J. Chem. Soc. Faraday Trans. 88 (1992) 865.

    Google Scholar 

  29. M. Klaua and T.E. Madey, Surf. Sci. 136 (1984) L42.

    Google Scholar 

  30. M. Canepa, P. Cantini, L. Mattera, M. Salvietti, S. Terreni and F. Vadenazzi, Surf. Sci. 287/288 (1993) 273.

    Google Scholar 

  31. A. Bielański and J. Haber, in:Oxygen in Catalysis (Dekker, New York, 1991).

    Google Scholar 

  32. F.P. Fehlner and N.F. Mott, Oxid. Metals 2 (1970) 59.

    Google Scholar 

  33. K. Fritscher and Y.T. Lee, Oxid. Metals 32 (1989) 295.

    Google Scholar 

  34. J. Engelhardt and J. Valyon, in:Hydrogen Effect in Catalysis: Fundamental and Practical Applications, eds. Z. Paál and G. Menon (Dekker, New York, 1988) p. 565.

    Google Scholar 

  35. C. Lowis, M. Che and M. Anpo, J. Catal. 141 (1993) 453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, X., Muhler, M., Pettinger, B. et al. The effect of water on the formation of strongly bound oxygen on silver surfaces. Catal Lett 32, 171–183 (1995). https://doi.org/10.1007/BF00806112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806112

Keywords

Navigation