Skip to main content
Log in

The effects of Al on the calcium currents inHelix neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. The effects of aluminium (Al) on calcium (Ca) currents were investigated by using the conventional two-electrode voltage clamp technique inHelix pomatia neurons. The peak amplitude, kinetics, and voltage dependence of activation and inactivation of the Ca currents were studied in the presence of 10−5−10−3 M AlCl3, at pH 6.

2. Al prolonged the rising phase of the Ca currents and therefore increased the time to peak at each command voltage step used.

3. There was no significant influence of Al on the peak amplitude of the Ca currents, but the voltage dependence of the time to peak, activation, and inactivation of the Ca currents shifted to more positive potentials as a consequence of Al treatment.

4. The leak currents were not influenced by Al up to 1 mM, which was the maximal dose applied.

5. The results support the suggestion that Al may modify the Ca homeostasis and that it exerts a neurotoxic effect, at least in part, by modulation of the Ca current of the neuronal membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banin, E., and Meiri, H. (1987). Impaired control of information transfer at an isolated synapse treated by aluminum: is it related to dementia?Brain. Res. 423:359–363.

    Google Scholar 

  • Banin, E., and Meiri, H. (1990). Toxic effects of alumino-silicates on nerve cells.Neuroscience 39:171–178.

    Google Scholar 

  • Birchall, J. D., and Chappell, J. S. (1988). Aluminium, chemical physiology, and Alzheimer's disease.Lancet Oct. 29:1008–1010.

    Google Scholar 

  • Brehm, P., and Eckert, R. (1978). Calcium entry leads to inactivation of calcium channel in Paramecium.Science 202:1203–1206.

    Google Scholar 

  • Candy, J. M., Oakley, A. E., and Klinowski, J. (1986). Aluminosilicates and senile plaque formation in Alzheimer's disease.Lancet 2:354–357.

    Google Scholar 

  • Crapper, D. R., and Dalton, A. J. (1973). Aluminium induced neurofibrillary degeneration, brain electrical activity and alterations in acquisition and retention.Physiol. Behav. 10:935–945.

    Google Scholar 

  • Crapper, D. R., and Tomko, J. G. (1975). Neuronal correlates of an encephalopathy associated with aluminium neurofibrillary degeneration.Brain Res. 97:253–264.

    Google Scholar 

  • Crapper, D. R., Quitkat, S., Krishnan, S. S., Dalton, A. J., and DeBoni, U. (1980). Intracellular aluminium content in Alzheimer's disease, dialysis encephalopathy and experimental aluminium encephalopathy.Acta Neuropathol. 50:19–24.

    Google Scholar 

  • Eckert, R., and Chad, J. E. (1984). Inactivation of calcium channels.Prog. Biophys. Mol. Biol. 4:215–264.

    Google Scholar 

  • Farnell, B. J., DeBoni, U., and Crapper-McLachlan, D. R. (1982). Aluminium neurotoxicity in the absence of meurofibrillary degeneration in CA1 hiopocampal pyramidal neurons.Exp. Neurol. 78:241–258.

    Google Scholar 

  • Farnell, B. J., Crapper-McLachlan, D. R., Bainbridge, K., DeBoni, U., Wong, L., and Wood, P. L. (1985). Calcium metabolism in aluminium encephalopathy.Exp. Neurol. 88:68–83.

    Google Scholar 

  • Garruto, R. M., Fukatsu, R., Yanagihara, R., Gajdusek, D. C., Hook, G., and Fiori, C. E. (1984). Imaging of calcium and aluminum neurofibrillary tangle-bearing neurons in parkisonism-dementia of Guam.Proc. Natl. Acad. Sci. USA 81:1875–1879.

    Google Scholar 

  • Ghetti, B., Musicco, M., Norton, J., and Bugiani, O. (1985). Nerve cell loss in the progressive encephalopathy induced by aluminium powder. A morphologic and semiquantitative study of the Purkinje cells.Neuropathol. Appl. Neurobiol. 11:31–53.

    Google Scholar 

  • Gulya, K., Rakonczay, A., and Kása, P. (1990). Cholinotoxic effect of aluminum in rat brain.J. Neurochem. 54:1020–1026.

    Google Scholar 

  • Hille, B. (1992).Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Klatzo, I., Wisniewski, H., and Streicher, E. (1965). Experimental production of neurofibrillary degeneration. I. Light microscopic observations.J. Neuropathol. Exp. Neurol. 24:187–199.

    Google Scholar 

  • Koenig, M. L., and Jope, R. S. (1987). Aluminum inhibits the fast phase of voltage-dependent calcium influx into synaptosomes.J. Neurochem. 49:316–320.

    Google Scholar 

  • Kostyuk, P. G., Veselovsky, N. S., and Fedulova, S. A. (1981). Ionic currents in the somatic membrane of rat dorsal root ganglion neurons.-II. Calcium currents.Neuroscience 6:2431–2437.

    Google Scholar 

  • Langui, D., Andertou, B. H., Brion, J. P., and Ulrich, J. (1988). Effects of aluminium chloride on cultured cells from rat brain hemispheres.Brain Res. 438:67–76.

    Google Scholar 

  • Martin, R. B. (1986). The chemistry of aluminum as related to biology and medicine.Clin. Chem. 32:1797–1806.

    Google Scholar 

  • Meiri, H., and Shimoni, Y. (1991). Effects of aluminium on electrical and mechanical properties of frog atrial muscle.Br. J. Pharmacol. 102:483–491.

    Google Scholar 

  • Meiri, H., Banin, E., Roll, M., and Rousseau, A. (1993). Toxic effects of aluminium on nerve cells and synaptic transmission.Progr. Neurobiol. 40:89–121.

    Google Scholar 

  • Miller, C. A., and Levine, E. M. (1974). Effects of aluminum salts on cultured neuroblastoma cells.J. Neurochem. 22:751–758.

    Google Scholar 

  • Orrenius, S., McConkey, D. J., Bellomo, G., and Nicotera, P. (1989). Role of Ca2+ in toxic cell killing.TIPS 10:281–285.

    Google Scholar 

  • Perl, D. P., and Brody, A. R. (1980). Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons.Science 208:297–299.

    Google Scholar 

  • Perl, D. P., Gajdusek, D. C., Garruto, R. M., Yanagihara, R. T., and Gibbs, C. J. (1982). Intraneuronal aluminum accumulation in amyotropic lateral sclerosis and parkinsonism-dementia of Guam.Science 217:1053–1055.

    Google Scholar 

  • Roll, M., Banin, E., and Meiri, H. (1989). Differentiated neuroblastoma cells are more susceptible to aluminium toxicity than developing cells.Arch. Toxicol. 63:231–237.

    Google Scholar 

  • Shi, B., and Haug, A. (1990). Aluminum uptake by neuroblastoma cells.J. Neurochem. 55:551–558.

    Google Scholar 

  • Siegel, N., and Haug, A. (1983). Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies.Biochim. Biophys. Acta 744:36–45.

    Google Scholar 

  • Suhayda, C. G., and Haug, A. (1984). Organic acids prevent aluminum-induced conformational changes in calmodulin.Biochem. Biophys. Res. Commun. 119:376–381.

    Google Scholar 

  • Tillotson, D. (1979). Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons.Proc. Natl. Acad. Sci. USA 76:1497–1500.

    Google Scholar 

  • Wisniewski, H. M., Shek, J. W., Gruca, S., and Sturman, J. A. (1984). Aluminium induced neurofibrillary changes in axons and dendrites.Acta. Neuropathol. 63:190–197.

    Google Scholar 

  • Yates, C. M., Simpson, J., Russell, D., and Gordon, A. (1980). Cholinergic enzymes in neurofibrillary degeneration produced by aluminium.Brain Res. 197:269–274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, I., Erdélyi, L. The effects of Al on the calcium currents inHelix neurons. Cell Mol Neurobiol 14, 809–817 (1994). https://doi.org/10.1007/BF02088686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088686

Key words

Navigation