Skip to main content
Log in

Expression of the small heat shock protein (hsp) 27 in human astrocytomas correlates with histologic grades and tumor growth fractions

  • Review Article
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Cellular expression and distribution of the stress response small heat shock protein 27 (hsp27) in 39 high-grade astrocytomas (27 glioblastoma multiformes, 12 anaplastic astrocytomas) and in 27 low-grade astrocytomas (grade I–II) were analyzed immunohistochemically.

2. The correlation between hsp27 expression and tumor growth fractions of the astrocytomas was examined following Ki-67 immunostaining.

3. The hsp27 staining was cell cytoplasmic. The hsp27 immunopositive rate was significantly higher in high-grade astrocytomas; the rates were 74% for glioblastomas, 58% for anaplastic astrocytomas, and 37% for low-grade astrocytomas. The small and large tumor cells, especially in glioblastomas, multinucleated tumor giant cells, tumor cells in the pseudopalisading and necrotic areas, cells of the microvascular endothelial proliferations, and tumor vascular smooth muscles were usually hsp27 positive. The mean percentage of hsp27-positive cells was significantly higher in the glioblastomas alone and in the combined high-grade astrocytomas, compared to the low-grade, and in recurrent rather than in primary high-grade astrocytomas.

4. The high-grade astrocytomas had a highly statistical significant Ki-67 labeling index. The Ki-67 labeling indices were significantly higher in the hsp27-positive than the hsp27-negative astrocytomas, irrespective of the histological grade. In the high-grade astrocytomas with a Ki-67 labeling index of five and above, 81% of those tumors were hsp27 positive.

5. Thus, a large number of human astrocytomas express hsp27, and hsp27 expression correlates with histological grades of astrocytoma and with tumor growth fractions. This being the case, hsp27 is likely to have a role in the growth of human astrocytomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrigo, A. P., Suhan, J. P., and Welch, W. J. (1988). Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein.Mol. Cell. Biol. 85059–5071.

    PubMed  Google Scholar 

  • Chambard, J. C., Franchi, A., Cam, A. L., and Poayssegur, J. (1983). Growth factor-stimulated protein phosphorylation in GO/G1-arrested fibroblast. Two distinct classes of growth factors with potentiating effects.J. Biol. Chem. 2581706–1713.

    PubMed  Google Scholar 

  • Chamness, G. C., Ruiz, A., Fulcher, L., Clark, G., Fuqua, S., and McGuire, W. (1989). Estrogen-inducible heat shock protein hsp27 predicts recurrence in node-negative breast cancer.Proc. Am. Assoc. Cancer Res. 30252.

    Google Scholar 

  • Chirico, W. J., Waters, M. G., and Blobet, G. (1988). 70 KD heat shock regulated proteins stimulate protein translocation into microsomes.Nature 322805–810.

    Google Scholar 

  • Darbon, J. M., Tournier, J. F., Tauber, J. P., and Bayard, F. (1986). Possible role of protein phosphorylation in the mitogenic effect of high density lipoproteins on cultured vascular endothelial cells.J. Biol. Chem. 2618002–8008.

    PubMed  Google Scholar 

  • Darbon, J. M., Issandou, M., Tournier, J. F., and Bayard, F. (1990). The respective 27 KDa and 28 KDa protein kinase C substrates in vascular endothelial and MCF-7 cells are most probably heat shock proteins.Biochem. Biophys. Res. Commun. 168527–536.

    PubMed  Google Scholar 

  • Deshaies, R. J., Koch, B. D., Washburne, M. W., Craig, E. A., and Schekman, R. (1988). A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptide.Nature 332800–805.

    PubMed  Google Scholar 

  • Ellis, R. J., and Van der Vies, S. M. (1991). Molecular chaperones.Annu. Rev. Biochem. 60321–347.

    PubMed  Google Scholar 

  • Fleming, T. P., Saxena, A., Clark, W. C., Robertson, J. T., Oldfield, E. H., Aaronson, S. A., and Ali, I. V. (1992). Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors.Cancer Res. 524550–4553.

    PubMed  Google Scholar 

  • Fuqua, S. A. W., Blun-Salingaros, M., and McGuire, W. L. (1989). Induction of the estrogen-regulated “24 K” protein by heat shock.Cancer Res. 44126–4129.

    Google Scholar 

  • Hepburn, A., Demolle, D., Boeynaems, J. M., Fiers, W., and Dumont, J. E. (1988). Rapid phosphorylation of a 27 KDa protein induced by tumor necrosis factor.FEBS Lett. 227175–178.

    PubMed  Google Scholar 

  • Kato, M., Hertz, F., Kato, S., and Hirano, A. (1992). Expression of stress-response (heat-shock) protein 27 in human brain tumors: An immunohistochemical study.Acta Neuropathol. 83420–422.

    PubMed  Google Scholar 

  • Kato, S., Hirano, A., Kato, M., Herz, F., and Ohama, E. (1993). Comparative study on the expression of stress-response protein (sr)p 72, srp27, alpha B-crystallin and ubiquitin in brain tumors: An immunohistochemical investigation.Neuropathol. Appl. Neurobiol. 19436–442.

    PubMed  Google Scholar 

  • Kaur, P., and Saklatvala, J. (1988). Interleukin-1 and tumor necrosis factor increases phosphorylation of fibroblast proteins.FEBS Lett. 2416–10.

    PubMed  Google Scholar 

  • Key, J. L., Lin, C. Y., and Chen, Y. M. (1981). Heat shock proteins of higher plants.Proc. Natl. Acad. Sci. USA 781708–1711.

    PubMed  Google Scholar 

  • Landry, J., Chretien, P., Lambert, H., Hickey, E., and Weber, L. A. (1989). Heat shock resistance conferred by expression of the human Hsp27 gene in rodent cells.J. Cell Biol. 1097–15.

    PubMed  Google Scholar 

  • Manley, J. L., Fire, A., Samuel, M., and Sharp, P. A. (1983). In vitro transcription: Whole cell extract.Methods Enzymol. 101568–582.

    PubMed  Google Scholar 

  • McGuire, S. E., Fuqua, S. A. W., and Naylor, S. L. (1989). Chromosomal assignments of human 27-KDa heat shock protein gene family.Somat. Cell. Mol. Genet. 15167–171.

    PubMed  Google Scholar 

  • Michishita, M., Satoh, M., Yamaguchi, M., Hirayoshi, K., Okuma, M., and Nagata, K. (1991). Phosphorylation of the stress protein Hsp27 is an early event in murine myelomonocytic leukemia cell differentiation induced by leukemia inhibitory factor/D-factor.Biochem. Biophys. Res. Commun. 176979–984.

    PubMed  Google Scholar 

  • Montine, T. J., Vandersteenhoven, J. J., Aguzzi, A., Boyko, O. B., Dodge, R. K., Kerns, B. J., and Burger, P. C. (1994). Prognostic significance of Ki-67 proliferation index in supratentorial fibrillary astrocytic neoplasm.Neurosurgery 34674–679.

    PubMed  Google Scholar 

  • Morimoto, R. I. (1991). Heat shock: The role of transient inducible responses in cell damage, tranformation, and differentiation.Cancer Res. 3295–301.

    Google Scholar 

  • Pecham, P.M. (1991). Heat shock proteins and cell proliferation.FEBS Lett. 2801–4.

    PubMed  Google Scholar 

  • Raghavan, R., Steart, P., and Weller, R. O. (1990). Cell proliferation patterns in the diagnosis of astrocytomas, anaplastic astrocytomas, and glioblastoma multiforme. A Ki-67 study.Neuropathol. Appl. Neurobiol. 16123–133.

    PubMed  Google Scholar 

  • Rasheed, B. K. A., McLendon, R. E., Herndon, J. E., Friedman, H. S., Friedman, A. H., Bigner, D. D., and Bigner, S. H. (1994). Alterations of the TP53 gene in human gliomas.Cancer Res. 541324–1330.

    PubMed  Google Scholar 

  • Renkawek, K., Bosman, G. J. C. M., and de Jong, W. W. (1994). Expression of small heat-shock protein hsp27 in reactive gliosis in Alzheimer disease and other types of dementia.Acta Neuropathol. 87511–519.

    PubMed  Google Scholar 

  • Sahai, A., Feuerstein, N., Cooper, H. L., and Salomon, D. S. (1986). Effect of epidermal growth factor and 12-O-tetradecanoylphorbol-13-acetate on the phosphorylation of soluble acidic proteins in A431 epidermoid carcinoma cells.Cancer Res. 464143–4150.

    PubMed  Google Scholar 

  • Shibuya, M., Ito, S., Miwa, T., Davis, R. L., Wilson, C. B., and Hoshino, T. (1993). Proliferative potential of brain tumors.Cancer 71199–206.

    PubMed  Google Scholar 

  • Thor, A., Benz, C., Moore, D. II., Goldman, E., Edgerton, S., Landry, J., Schwartz, L., Mayall, B., Hickey, E., and Weber, L. A. (1991). Stress response protein (srp-27) determination in primary human breast carcinomas: Clinical, histologic, and prognostic correlations.J. Natl. Cancer Inst. 83170–178.

    PubMed  Google Scholar 

  • Yokoyama, N., Iwaki, T., Goldman, J. E., Tateishi, J., and Fukui, M. (1993). Small heat-shock protein is expressed in meningiomas and in granulofilamentous inclusion bodies.Acta Neuropathol. 85248–255.

    PubMed  Google Scholar 

  • Zulch, K. J. (1979).International Histological Classification of Tumors, No. 21, World Health Organization, Geneva.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalid, H., Tsutsumi, K., Yamashita, H. et al. Expression of the small heat shock protein (hsp) 27 in human astrocytomas correlates with histologic grades and tumor growth fractions. Cell Mol Neurobiol 15, 257–268 (1995). https://doi.org/10.1007/BF02073332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02073332

Key Words

Navigation