Skip to main content
Log in

Chemoattractant-induced NADPH oxidase activity in human monocytes is terminated without any association of receptor-ligand complex to cytoskeleton

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

When the chemotactic peptide formylmethionyl-leucyl-phenylalanine binds to its cell surface receptor, a transmembrane signal is generated that activates the superoxide-producing NADPH oxidase of human phagocytes. Comparing monocytes and neutrophils with regard to the production of superoxide anion induced by the peptide, we found a similar time-course for both types of cells. In neutrophils, ligand binding induced a conversion of the receptor to a high-affinity form, a change suggested to be due to an association of the receptor-ligand complex to the Triton X-100-insoluble cytoskeleton. This event has been hypothesized to terminate the signal that activates the NADPH oxidase and thereby results in cessation of the cellular production of superoxide anion. Neutrophils preincubated with the cytoskeleton-disrupting drug cytochalasin B showed an increased and prolonged superoxide anion production after activation with the peptide, thus indicating that the cytoskeleton is involved in terminating this response. Formylmethionyl-leucyl-phenylalanine was also found to induce polymerization of actin in monocytes; however, cytochalasin B had no effect on the peptide-induced generation of superoxide anion in these cells. Furthermore, also in monocytes, ligand binding induced a conversion of the receptor to a high-affinity form; however, the receptor-ligand complex did not coisolate with the Triton X-100-insoluble cytoskeleton. These results indicate that, in monocytes, the NADPH oxidase activating pathway is terminated without any association of the receptor-ligand complex to the Triton X-100-insoluble cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, R. M., andJ. T. Curnutte. 1991. Molecular basis of chronic granulomatous disease.Blood 77:673–686.

    PubMed  Google Scholar 

  2. Segal, A. W. 1989. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease.J. Clin. Invest. 83:1785–1793.

    PubMed  Google Scholar 

  3. Clark, R. A., B. D. Volpp, K. G. Leidal, andW. M. Nauseef. 1990. Two cytosolic components of human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation.J. Clin. Invest. 85:714–721.

    PubMed  Google Scholar 

  4. Klebanoff, S. J. 1980. Oxygen metabolism and the toxic properties of phagocytes.Ann. Intern. Med. 93:480–489.

    PubMed  Google Scholar 

  5. Sandborg, R. R., andJ. E. Smolen. 1988. Biology of disease. Early biochemical events in leukocyte activation.Lab Invest. 59:300–320.

    PubMed  Google Scholar 

  6. Hyslop, P. A., Z. G. Oades, A. J. Jesaitis, R. G. Painter, C. G. Cochrane, andL. A. Sklar. 1984. Evidence forN-formyl chemotactic peptide-stimulated GTPase activity in human neutrophil homogenates.FEBS Lett. 166:165–169.

    PubMed  Google Scholar 

  7. Barrowman, M. M., S. Cockcroft, andB. D. Gomperts. 1986. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils.Nature 319:504–507.

    PubMed  Google Scholar 

  8. Becker, E. L., Y. Kanaho, andJ. C. Kermode. 1987. Nature and functioning of the pertussis toxin-sensitive G protein of neutrophils.Biomed. Pharmacother. 41:289–297.

    PubMed  Google Scholar 

  9. Bommakanti, R. K., G. M. Bockoch, J. O., Tolley, R. E. Schreiber, D. W. Siemsen, K.-N. Klotz, andA. J. Jesaitis. 1992. Reconstitution of physical complex between theN-formyl chemotactic peptide receptor and G protein.J. Biol. Chem. 267:7576–7581.

    PubMed  Google Scholar 

  10. Bellavite, P. 1988. The superoxide-forming enzymatic system of phagocytes.Free Radic. Biol. Med. 4:225–261.

    PubMed  Google Scholar 

  11. Rossi, F. 1986. The O2-forming NADPH oxidase of the phagocytes: Nature, mechanisms of activation and function.Biochim. Biophys. Acta 853:65–89.

    PubMed  Google Scholar 

  12. Jesaitis, A. J., andK.-N. Klotz. 1993. Cytoskeletal regulation of chemotactic receptors: Molecular complexation ofN-formyl peptide receptors with G protein and actin.Eur. J. Haematol. 51:288–293.

    PubMed  Google Scholar 

  13. Jesaitis, A. J., J. O. Tolley, R. G. Painter, L. A. Sklar, andC. G. Cochrane. 1985. Membrane-cytoskeleton interaction and the regulation of chemotactic peptide-induced activation of human granulocytes: The effects of dihydrocytochalasin B.J. Cell. Biochem. 27:241–253.

    PubMed  Google Scholar 

  14. Snyderman, R., andM. C. Pike. 1984. Chemoattractant receptors on phagocytic cells.Annu. Rev. Immunol. 2:257–281.

    PubMed  Google Scholar 

  15. Thelen, M., andM. Baggiolini. 1990. Reconstitution of cell-free NADPH-oxidase from human monocytes and comparison with neutrophils.Blood 75:2223–2228.

    PubMed  Google Scholar 

  16. Böyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g.Scand. J. Clin. Invest. Suppl. 97:77–89.

  17. Johansson, A., andC. Dahlgren. 1989. Characterization of the luminol-amplified light-generating reaction induced in human monocytes.J. Leuk. Biol. 45:444–451.

    Google Scholar 

  18. Nielsen, H. 1987. Isolation and functional activity of human blood monocytes after adherence to plastic surfaces: Comparison of different detachment methods.Acta Pathol. Microbiol. Immunol. Scand. (C) 95:81–84.

    Google Scholar 

  19. Hellstrand, K., B. Kjellson, andS. Hermodsson. 1991. Monocyte-induced down-modulation of CD16 and CD56 antigens on human natural killer cells and its regulation by histamine H2-receptors.Cell. Immunol. 138:44–54.

    PubMed  Google Scholar 

  20. Cohen, H. J., andM. E. Chovaniec. 1978. Superoxide generation by digitonin-stimulated guinea pig granulocytes.J. Clin. Invest. 61:1081–1087.

    PubMed  Google Scholar 

  21. Särndahl, E., M. Lindroth, T. Bengtsson, M. Fällman, J. Gustavsson, O. Stendahl, andT. Andersson. 1989. Association of ligand-receptor complexes with actin filaments in human neutrophils: A possible regulatory role for a G-protein.J. Cell Biol. 109:2791–2799.

    PubMed  Google Scholar 

  22. Bengtsson, T., I, Rundqvist, O. Stendahl, M. P. Wymann, andT. Andersson. 1988. Increased breakdown of phosphatidylinositol 4,5-bisphosphate is not an initiating factor for actin assembly in human neutrophils.J. Biol. Chem. 263:17385–17389.

    PubMed  Google Scholar 

  23. Jesaitis, A. J., J. R. Naemura, L. A. Sklar, C. G. Cochrane, andR. G. Painter. 1984. Rapid modulation ofN-formyl chemotactic peptide receptors on the surface of human granulocytes: Formation of high-affinity ligand-receptor complex in transient association with cytoskeleton.J. Cell Biol. 98:1378–1387.

    PubMed  Google Scholar 

  24. Cronstein, B. N., andK. A. Haines. 1992. Stimulus-response uncoupling in the neutrophil. Adenosine A2-receptor occupancy inhibits the sustained, but not the early, events of stimulus transduction in human neutrophils by a mechanism independent of actin-filament formation.Biochem. J. 281:631–635.

    PubMed  Google Scholar 

  25. Jesaitis, A. J., J. O. Tolley, andR. A. Allen. 1986. Receptor-cytoskeleton interaction and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes.J. Biol. Chem. 261:13662–13669.

    PubMed  Google Scholar 

  26. Jesaitis, A. J., G. M. Bokoch, J. O. Tolley, andR. A. Allen. 1988. Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins.J. Cell Biol. 107:921–928.

    PubMed  Google Scholar 

  27. Brown, S., andJ. A. Spudich. 1981. Mechanism of action of cytochalasin: Evidence that it binds to actin filament ends.J. Cell Biol. 88:487–491.

    PubMed  Google Scholar 

  28. Cooper, J. A. 1987. Effects of cytochalasin and phalloidin on actin.J. Cell Biol. 105:1473–1478.

    PubMed  Google Scholar 

  29. Ryder, M. I., R. N. Weinreb, andR. Niederman. 1988. Microtubule-granule relationships in motile human polymorphonuclear leukocytes.Anat. Rec. 221:679–686.

    PubMed  Google Scholar 

  30. Bengtsson, T., C. Dahlgren, O. Stendahl, andT. Andersson. 1991. Actin assembly and regulation of neutrophil function: Effects of cytochalasin B and tetracaine on chemotactic peptide-induced O2 production and degranulation.J. Leuk. Biol. 46:236–244.

    Google Scholar 

  31. Cassimeris, L., H. McNeill, andS. H. Zigmond. 1990. Chemoattractant stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities.J. Cell Biol. 110:1067–1075.

    PubMed  Google Scholar 

  32. Watts, R. G., andT. H. Howard. 1992. Evidence for a gelsolin-rich, labile F-actin pool in human polymorphonuclear leukocytes.Cell Motil. Cytoskeleton 21:25–37.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, A., Särndahl, E., Andersson, T. et al. Chemoattractant-induced NADPH oxidase activity in human monocytes is terminated without any association of receptor-ligand complex to cytoskeleton. Inflammation 19, 179–191 (1995). https://doi.org/10.1007/BF01534460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534460

Keywords

Navigation