Skip to main content
Log in

Viscosity Measurements of Ammonia, R32, and R134a. Vapor Buoyancy and Radial Acceleration in Capillary Viscometers

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The saturated liquid viscosity of ammonia (NH3) and of the hydrofluorocarbons, difluoromethane (CH2F2, R32) and 1,1,1,2-tetrafluoroethane (CF3–CH2F, R134a), was measured in a sealed gravitational viscometer with a straight vertical capillary. The combined temperature range was from 250 to 350 K. The estimated uncertainty of the ammonia measurements is ±3.3 and ±2 to 2.4% for the hydrofluorocarbons with a coverage factor of two. The results are compared with literature data which have been measured with capillary viscometers of different design. Agreement within the combined experimental uncertainty is achieved when some of the literature data sets are corrected for the vapor buoyancy effect and when a revised radial acceleration correction is applied to data which were obtained in viscometers with coiled capillaries. An improved correction for the radial acceleration is proposed. It is necessary to extend inter-national viscometry standards to sealed gravitational capillary instruments because the apparent inconsistencies between refrigerant viscosity data from different laboratories cannot be explained by contaminated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Kawata, K. Kurase, A. Nagashima, and K. Yoshida, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), p. 49.

    Google Scholar 

  2. H. R. van den Berg, Precisiemetingen aan de Viscositeitscoefficient van Krypton en de logarithmische Term in de Dichtheidsontwikkeling, Ph.D. thesis (Universiteit van Amsterdam, Amsterdam, 1979).

    Google Scholar 

  3. H. R. van den Berg and N. J. Trappeniers, Proc. 8th Symp. Thermophys. Prop. (ASME, 1982), p. 172.

  4. T. Okubo, T. Hasuo, and A. Nagashima, Int. J. Thermophys. 13:931 (1992).

    Google Scholar 

  5. H. Bauer and G. Meerlender, Rheol. Acta 23:514 (1984).

    Google Scholar 

  6. T. W. Phillips and K. P. Murphy, J. Chem. Eng. Data 15:304 (1970).

    Google Scholar 

  7. D. Ripple, Rev. Sci. Instr. 63:3153 (1992).

    Google Scholar 

  8. V. Z. Geller, M. E. Paulaitis, D. B. Bivens, and A. Yokozeki, Int. J. Thermophys. 17:75 (1996).

    Google Scholar 

  9. I. R. Shankland, R. S. Basu, and D. P. Wilson, Proceedings, Status of the CFCs—Refrigeration Systems and Refrigerant Properties. Meeting of HR Commissions B1, B2, E1, E2 (International Institute of Refrigeration, West Lafayette, IN, 1988), p. 305.

    Google Scholar 

  10. D. Ripple and O. Matar, J. Chem. Eng. Data 38:560 (1993).

    Google Scholar 

  11. A. Laesecke and D. R. Defibaugh, J. Chem. Eng. Data 41:59 (1996).

    Google Scholar 

  12. D. Ripple and D. Defibaugh, J. Chem. Eng. Data 42:360 (1997).

    Google Scholar 

  13. A. Laesecke and R. F. Hafer, J. Chem. Eng. Data 43:84 (1998).

    Google Scholar 

  14. M. J. Assael and S. K. Polimatidou, J. Thermophys. 18:353 (1997).

    Google Scholar 

  15. M. T. Barão, C. A. Nieto de Castro, and U. V. Mardolcar, Int. J. Thermophys. 18:419 (1997).

    Google Scholar 

  16. C. M. B. P. Oliveira and W. A. Wakeham, High Temp. High Press. 27/28:91 (1995/1996).

    Google Scholar 

  17. G. D. Wedlake, J. H. Vera, and G. A. Rateliff, Rev. Sci. Instr. 50:93 (1979).

    Google Scholar 

  18. B. Kaiser, A. Laesecke, and M. Stelbrink, Int. J. Thermophys. 12:289 (1991).

    Google Scholar 

  19. R. C. Hardy, NBS Viscometer Calibrating Liquids and Capillary Tube Viscometers, NBS Monograph 55 (National Bureau of Standards, Washington, DC, 1962).

    Google Scholar 

  20. J. Kestin, M. Sokolov, and W. Wakeham, Appl. Sci. Res. 27:241 (1973).

    Google Scholar 

  21. M. R. Cannon, R. E. Manning, and J. D. Bell, Anal. Chem. 32:355 (1960).

    Google Scholar 

  22. J. J. Jasper, J. Phys. Chem. Ref. Data 1:841 (1972).

    Google Scholar 

  23. R. D. Goodwin, J. Phys. Chem. Ref. Data 18:1565 (1989).

    Google Scholar 

  24. R. Tillner-Roth, F. Harms-Watzenberg, and H. D. Baehr, Proc., DKV-Jahrestagung Nürnberg (DKV, Stuttgart, Germany, 1993), Vol. II.1, p. 167.

    Google Scholar 

  25. R. Tillner-Roth and H. D. Baehr, J. Phys. Chem. Ref. Data 23:657 (1994).

    Google Scholar 

  26. R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273 (1997).

    Google Scholar 

  27. F. A. Gonçalves, J. Kestin, and J. V. Sengers, Int. J. Thermophys. 12:1013 (1991).

    Google Scholar 

  28. A.-M. Lanzilotto, T.-S. Leu, M. Amabile, R. Wildes, and J. Dunsmuir, An Investigation of Microstructure and Microdynamics of Fluid Flow in MEMS (ASME, New York, 1996), p. 789.

    Google Scholar 

  29. B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Tech. Note 1297 (National Institute of Standards and Technology, Washington, DC, 1994).

    Google Scholar 

  30. A. Fenghour, W. A. Wakeham, V. Vesovic, J. T. R. Watson, J. Millat, and E. Vogel, J. Phys. Chem. Ref. Data 24:1649 (1996).

    Google Scholar 

  31. S. A. Klein, M. O. McLinden, and A. Laesecke, Int. J. Refrig. 20:208 (1997).

    Google Scholar 

  32. D. B. Bivens, A. Yokozeki, V. Z. Geller, and M. E. Paulaitis, Proceedings, ASHRAE/NIST Refrigerants Conference (ASHRAE, Gaithersburg, MD, 1993), p. 73.

    Google Scholar 

  33. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 15:591 (1994).

    Google Scholar 

  34. A. J. Grebenkov, V. P. Zhelezny, P. M. Klepatsky, O. V. Beljajeva, Y. A. Chernjak, Y. G. Kotelevsky, and B. D. Timofejev, Int. J. Thermophys. 17:535 (1996).

    Google Scholar 

  35. R. Heide and J. Schenk, Bestimmung der Transportgrößen von HFKW, Heft 1 Viskosität und Oberflächenspannung (Forschungsrat Kältetechnik e. V., Frankfurt am Main, Germany, 1996).

    Google Scholar 

  36. C. M. B. P. Oliveira and W. A. Wakeham, Int. J. Thermophys. 14:1131 (1993).

    Google Scholar 

  37. L.-Q. Sun, M.-S. Zhu, L.-Z. Han, and Z-Z. Lin, J. Chem. Eng. Data 41:292 (1996).

    Google Scholar 

  38. A. Kumagai and S. Takahashi, Int. J. Thermophys. 12:105 (1991).

    Google Scholar 

  39. V. V. Altunin, V. Z. Geller, E. K. Petrov, D. C. Rasskazov, and G. A. Spirdonov, Thermophysical Properties of Freons, Methane Series part 1, Vol. 8 (National Standard Reference Data Service of the USSR, 1987).

  40. L.-Z. Han, M.-S. Zhu, S.-Y. Li, and D. Luo, J. Chem. Eng. Data 40:650 (1995).

    Google Scholar 

  41. N. B. Vargaftik, Y. K. Vinogradov, and V. S. Yargin, Handbook of Physical Properties of Liquids and Gases. Pure Substances and Mixtures (Begell House, New York and Wallingford, UK, 1996).

    Google Scholar 

  42. W. R. Dean, Phil. Mag. 4:208 (1927).

    Google Scholar 

  43. W. R. Dean, Phil. Mag. 5:673 (1928).

    Google Scholar 

  44. C. M. White, Proc. Roy. Soc. Ser. A 123:645 (1929).

    Google Scholar 

  45. H. Schlichting, Grenzschicht-Theorie (Verlag G. Braun, Karlsruhe, Germany, 1965).

    Google Scholar 

  46. D. J. McConalogue and R. S. Srivastava, Proc. Roy. Soc. Ser. A 307:37 (1968).

    Google Scholar 

  47. A. Bottaro, J. Fluid Mech. 251:627 (1993).

    Google Scholar 

  48. J. R. Partington, An Advanced Treatise on Physical Chemistry (Longmans, Green, London, 1949), p. 876.

    Google Scholar 

  49. R. A. Dawe, Rev. Sci. Instr. 44:1231 (1973).

    Google Scholar 

  50. R. A. Dawe, The Viscosity of Simple Gases, Ph.D. thesis (St. Catherine's College, University of Oxford, Oxford, UK, 1968).

    Google Scholar 

  51. D. N. Ku, in Annual Review of Fluid Mechanics (Annual Reviews, Palo Alto, CA, 1997), p. 399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laesecke, A., Lüddecke, T.O.D., Hafer, R.F. et al. Viscosity Measurements of Ammonia, R32, and R134a. Vapor Buoyancy and Radial Acceleration in Capillary Viscometers. International Journal of Thermophysics 20, 401–434 (1999). https://doi.org/10.1023/A:1022644718603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022644718603

Navigation