Skip to main content
Log in

Thermophysical properties of liquids at high pressures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Most of the thermophysical properties of fluids are greatly altered at high pressures, and the studies of these changes are of much scientific and technological importance. In this paper, the effects of temperature and pressure on the density, viscosity, and thermal conductivity of various liquids are described briefly, based on recent experimental results from the author's laboratory. The objectives of this investigation, methods of measurements, and some of the experimental results are reviewed, as well as the present aspects in this field. Several important problems to be interpreted are also pointed out from the present measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thermodynamic Table Project Centre, IUPAC, London; Cryogenic Data Center, NBS, Boulder, Colorado; Thermodynamic Research Center, Texas A&M University; JANAF Thermochemical Table Project, The Dow Chemical Co., Midland, Michigan; TPRC/CINDAS, Purdue University; High Pressure Data Center, Brigham Young University; High Pressure Thermophysical Property Data Center, Research Inst. for Production Development, Kyoto.

  2. Examples on the transport properties of fluids. Ar (86–500 K, 0.1–100 MPa), N2 (75–500 K, 0.1–100 MPa): H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, J. Phys. Chem. Ref. Data 3:979 (1974). H20 (273–1073 K, 0.1–100 MPa): Japan Soc. of Mech. Eng., JSME Steam Tables (JSME, Tokyo, 1981). Methane (95–500 K, 0.1–50 MPa): H. J. M. Hanley, W. M. Haynes, and R. D. McCarty, J. Phys. Chem. Ref. Data 6:597 (1977). Ethane (200–500 K, 0.1–75 MPa): H. J. M. Hanley, K. E. Gubbins, and S. Murad, Ibid. 6:1167 (1977). Propane (140–500 K, 0.1–50 MPa): P. M. Holland, H. J. M. Hanley, K. E. Gubbins, and J. M. Haile, Ibid. 8:559 (1979).

    Google Scholar 

  3. H. Kubota, S. Tsuda, M. Murata, T. Yamamoto, Y. Tanaka, and T. Makita, Rev. Phys. Chem. Japan 49:59 (1980).

    Google Scholar 

  4. H. Kubota, Y. Tanaka, and T. Makita, Kagakukogaku Ronbunshu 1:176 (1975).

    Google Scholar 

  5. Y. Tanaka, T. Yamamoto, Y. Satomi, H. Kubota, and T. Makita, Rev. Phys. Chem. Japan 47:12 (1977).

    Google Scholar 

  6. M. Nishihara, K. Matsui, and T. Makita, J. Soc. Mat. Sci., Japan 32:114 (1983).

    Google Scholar 

  7. H. Kashiwagi and T. Makita, Int. J. Thermophys. 3:289 (1982).

    Google Scholar 

  8. H. Kashiwagi, M. Oishi, Y. Tanaka, H. Kubota, and T. Makita, Int. J. Thermophys. 3:101 (1982).

    Google Scholar 

  9. H. Kashiwagi, T. Hashimoto, Y. Tanaka, H. Kubota, and T. Makita, Int. J. Thermophys. 3:201 (1982).

    Google Scholar 

  10. H. Kashiwagi, T. Fukunaga, Y. Tanaka, H. Kubota, and T. Makita, Rev. Phys. Chem. Japan 49:70 (1980).

    Google Scholar 

  11. H. Kashiwagi, T. Fukunaga, Y. Tanaka, H. Kubota, and T. Makita, J. Chem. Thermodyn. 15:567 (1983).

    Google Scholar 

  12. S. Yokoyama, S. Tsuda, H. Kubota, Y. Tanaka, and T. Makita, 21st High Pressure Conference of Japan, 1C05 (1980), preprint.

  13. Y. Satomi, H. Kubota, Y. Tanaka, and T. Makita, 42nd Conf. Soc. Chem. Eng., Japan, H107 (1977), preprint.

  14. H. Kubota, Y. Tanaka, and T. Makita, J. Soc. Mat. Sci., Japan 32:107 (1983).

    Google Scholar 

  15. N. Harada, H. Kubota, Y. Tanaka, and T. Makita, 22nd High Pressure Conference of Japan, 1C16 (1981), preprint.

  16. S. Kusumoto, H. Kubota, Y. Tanaka, and T. Makita, 15th High Pressure Conference of Japan, 2B01 (1975), preprint.

  17. K. Arakawa, N. Harada, H. Kubota, Y. Tanaka, and T. Makita, 24th High Pressure Conference of Japan, 2D10 (1983), preprint.

  18. S. Matsuo, Y. Tanaka, H. Kubota, T. Makita, and K. Takatsuka, 42nd Conf. Soc. Chem. Eng., Japan, H101 (1977), preprint.

  19. S. Matsuo, Y. Tanaka, H. Kubota, and T. Makita, Proc. 2nd Japan Symp. Thermophys. Properties (1981), p. 89.

  20. T. Hashimoto, S. Matsuo, Y. Tanaka, H. Kubota, T. Makita, Y. Kadoma, and T. Kimura, 21st High Pressure Conference of Japan, 1C04 (1980), preprint.

  21. Y. Tanaka, H. Kubota, T. Makita, and Y. Kadoma, 23rd High Pressure Conference of Japan, IC11 (1982), preprint.

  22. T. Hase, Y. Tanaka, H. Kubota, and T. Makita, Proc. 4th Japan Symp. Thermophys. Properties (1983), p. 183.

  23. W. G. Cutler, R. H. McMickle, W. Webb, and R. W. Schiessler, J. Chem. Phys. 29:727 (1958).

    Google Scholar 

  24. D. A. Lowitz, J. W. Spencer, W. Webb, and R. W. Schiessler, J. Chem. Phys. 30:73 (1959).

    Google Scholar 

  25. E. M. Griest, W. Webb, and R. W. Schiessler, J. Chem. Phys. 29:711 (1958).

    Google Scholar 

  26. P. W. Bridgman, Physics of High Pressure (Bell, London, 1949).

    Google Scholar 

  27. P. W. Bridgman, Collected Experimental Papers, 7 vols. (Harvard Univ. Press, Cambridge, Mass., 1964).

    Google Scholar 

  28. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 61:57 (1926).

    Google Scholar 

  29. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 77:115 (1949).

    Google Scholar 

  30. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 59:139, 154 (1923).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makita, T. Thermophysical properties of liquids at high pressures. Int J Thermophys 5, 23–40 (1984). https://doi.org/10.1007/BF00502077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502077

Key words

Navigation