Skip to main content
Log in

The Sampling Theorem and Several Equivalent Results in Analysis

  • Published:
Journal of Computational Analysis and Applications

Abstract

First we show that several fundamental results on functions from theBernstein spaces \(B_\sigma ^p \) (such as Bernstein's inequality andthe reproducing formula) can be deduced from a weak form of the classicalsampling theorem. In §3 we discuss the mutual equivalence of thesampling theorem, the derivative sampling theorem and a harmonic functionsampling theorem. In §§4–6 we discuss connections between thesampling theorem and various important results in complex analysis andFourier analysis. Our considerations include Cauchy's integral formula,Poisson's summation formula, a Gaussian integral, certain properties ofweighted Hermite polynomials, Plancherel's theorem, the maximum modulusprinciple, and the Phragmén–Lindelöf principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Boas, Entire functions, Academic Press, New York, 1954.

    Google Scholar 

  2. R. P. Boas, A uniqueness theorem for harmonic functions, J. Approx. Theory, 5, 425-427 (1972).

    Google Scholar 

  3. S. Bochner, Lectures on Fourier integrals, Princeton University Press, Princeton 1959.

    Google Scholar 

  4. P. L. Butzer, M. Hauss, and R. L. Stens, The sampling theorem and its unique role in various branches of mathematics, Festschrift zum 300-jährigen Bestehen der Gesellschaft, Mitt. Math. Ges. Hamburg, 12, 523–547 (1991).

    Google Scholar 

  5. P. L. Butzer and G. Nasri-Roudsari, Kramer's sampling theorem in signal analysis and its role in mathematics; a survey, in Image processing; mathematical methods and applications (Proc. Conf. Cranfield, September 1994, J. M. Blackledge, ed.), Clarendon Press, Oxford, 1997, pp. 45–95.

    Google Scholar 

  6. P. L. Butzer, S. Ries, and R. L. Stens, Shannon's sampling theorem, Cauchy's integral formula, and related results, in Anniversary Volume on Approximation Theory and Functional Analysis (P. L. Butzer et al., eds), Birkhäuser, Basel, 1984, pp. 363–377.

    Google Scholar 

  7. P. L. Butzer, W. SplettstoÈsser, and R. L. Stens, The sampling theorem and linear prediction in signal analysis, and related results, Jahresber. Deutsch. Math. Verein., 90, 1–70 (1988).

    Google Scholar 

  8. P. L. Butzer and R. L. Stens, The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis, Lin. Alg. Appl., 52/53, 141–155 (1983).

    Google Scholar 

  9. E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966.

    Google Scholar 

  10. R. Courant, Di€erential and integral calculus, Vol. 1 (tr. by E. J. McShane, 2nd ed.), Blackie, London, 1937.

    Google Scholar 

  11. H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bull. Amer. Math. Soc., 7, 553–589 (1982).

    Google Scholar 

  12. J. R. Higgins, Sampling theory in Fourier and signal analysis: foundations, Clarendon Press, Oxford, 1996.

    Google Scholar 

  13. R. J. Marks II (ed.), Advanced topics in Shannon sampling and interpolation theory, Springer-Verlag, New York, 1992.

    Google Scholar 

  14. S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  15. Q. I. Rahman and G. Schmeisser, The summation formulae of Poisson, Plana, Euler-Maclaurin and their relationship, J. Math. Sci. (Part I), 28, 151–171 (1994).

    Google Scholar 

  16. F. Riesz and B. Sz.-Nagy, Vorlesungen uÈber Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.

    Google Scholar 

  17. G. Schmeisser and J. J. Voss, A new interpretation of the sampling theorem and its extensions, in Multivariate Approximation and Splines, (G. Nürnberger et al., eds.), Birkhäuser, Basel, 1997, pp. 275–288.

    Google Scholar 

  18. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971.

    Google Scholar 

  19. E. C. Titchmarsh, The theory of functions, (2nd ed.), Oxford University Press, Oxford, 1939.

    Google Scholar 

  20. E. C. Titchmarsh, Introduction to the theory of Fourier integrals (2nd ed.), Oxford University Press, Oxford, 1948.

    Google Scholar 

  21. J. M. Whittaker, On the cardinal function of interpolation theory, Proc. Edinburgh Math. Soc., 1, 41–46 (1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, J.R., Schmeisser, G. & Voss, J.J. The Sampling Theorem and Several Equivalent Results in Analysis. Journal of Computational Analysis and Applications 2, 333–371 (2000). https://doi.org/10.1023/A:1010164717587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010164717587

Navigation