Skip to main content
Log in

Proton translocation in cytochromec oxidase: Redox linkage through proximal ligand exchange on cytochromea 3

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

An analysis of resonance Raman scattering data from CO-bound cytochromec oxidase and from the photodissociated enzyme indicates that histidine may not be coordinated to the iron atom of cytochromea 3 in the CO-bound form of the enzyme. Instead, the data suggest that either a water molecule or a different amino acid residue occupies the proximal ligand position. From these data, it is postulated that ligand exchange on cytochromea 3 can occur under physiological conditions. Studies of mutant hemoglobins have demonstrated that tyrosinate binds preferentially to histidine in the ferric forms of the proteins. In cytochromec oxidase tyrosine residues are located near the histidine residues recently implicated in coordination to cytochromea 3 (Shapleighet al., 1992; Hosleret al., this volume). Expanding on these concepts, we propose a model for proton translocation at the O2-binding site based on proximal ligand exchange between tyrosine and histidine on cytochromea 3. The pumping steps take place at the level of the peroxy intermediate and at the level of the ferryl intermediate in the catalytic cycle and are thereby consistent with the recent results of Wilkstrom (1989) who found that proton pumping occurs only at these two steps. It is shown that the model may be readily extended to account for the pumping of two protons at each of the steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonini, G., Malatesta, F., Sarti, P., and Brunori, M. (1991).J. Biol. Chem. 266 13193.

    Google Scholar 

  • Argade, P. V., Ching, Y.-C., and Rousseau, D. L. (1984).Science 255 329.

    Google Scholar 

  • Babcock, G. T. (1988). InBiological Applications of Raman Spectroscopy (Spiro, T. G., ed.), Wiley, New York, Vol. 3, p. 293.

    Google Scholar 

  • Babcock, G. T., and Callahan, P. M. (1983).Biochemistry 22 2314.

    Google Scholar 

  • Babcock, G. T., and Wikstrom, M. (1992).Nature 356 301.

    Google Scholar 

  • Babcock, G. T., Jean, J. M., Johnson, L. N., Palmer, G., and Woodruff, W. H. (1984).J. Am. Chem. Soc. 106 8305.

    Google Scholar 

  • Babcock, G. T., Jean, J. M., Johnson, L. N., Woodruff, W. H., and Palmer, G. (1985).J. Inorg. Biochem. 23 243.

    Google Scholar 

  • Baker, G. M., and Palmer, G. (1987).Biochemistry 26 3038.

    Google Scholar 

  • Baker, G. M., Noguchi, M., and Palmer G. (1987).J. Biol. Chem. 262 595.

    Google Scholar 

  • Brunori, M., Colosimo, A., Rainoni, G., Wilson, M. T., and Antonini, E. (1979).J. Biol. Chem. 254 10769.

    Google Scholar 

  • Callahan, P. M., and Babcock, G. T. (1983).Biochemistry 22 452.

    Google Scholar 

  • Cao, J., Shapleigh, J., Gennis, R., Revzin, A., and Ferguson-Miller, S. (1991).Gene 101 133.

    Google Scholar 

  • Capaldi, R. A. (1990).Annu. Rev. Biochem. 59 569.

    Google Scholar 

  • Caughey, W. S. (1980). InMethods for Determining Metal Ion Environments in Proteins: Structure and Function of Metalloproteins (Darnall, D. W., and Wilkins, R. G., eds.), Academic Press, New York, p. 95.

    Google Scholar 

  • Chan, S. I., and Li, P. M. (1990).Biochemistry 29 1.

    Google Scholar 

  • Chance, B., Saronio, C., and Leigh J. S., Jr. (1975).Proc. Natl. Acad. Sci. USA 72 1635.

    Google Scholar 

  • Clore, G. M., Andreasson, L.-E., Karlsson, B., Aasa, R., and Malmstrom, B. G. (1980).Biochem. J. 185 139.

    Google Scholar 

  • Cooper, C. E. (1990).Biochim. Biophys. Acta 1017 187.

    Google Scholar 

  • Einarsdottir, O., Choc, M. O., Weldon, S., and Caughey, W. (1988).J. Biol. Chem. 263 13641.

    Google Scholar 

  • Findsen, E. W., and Ondrias, M. R. (1984).J. Am. Chem. Soc. 106 5736.

    Google Scholar 

  • Findsen, E. W., Centeno, J., Babcock, G. T., and Ondrias, M. R. (1987).J. Am. Chem. Soc. 109 5367.

    Google Scholar 

  • Finzel, B. C., Poulos, T. L., and Kraut, J. (1984).J. Biol. Chem. 259 13027.

    Google Scholar 

  • Gelles, J., Blair, D. F., and Chan, S. I. (1986).Biochim. Biophys. Acta 853 205.

    Google Scholar 

  • Gibson, Q. H., and Greenwood, C. (1963).Biochem. J. 86 541.

    Google Scholar 

  • Greenwood, C., and Gibson, Q. H. (1967).J. Biol. Chem. 242 1782.

    Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990a).Biochemistry 29 1380.

    Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990b).Proc. Natl. Acad. Sci. USA 87 2491.

    Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990c).Proc. Natl. Acad. Sci. USA 87 8408.

    Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990d).J. Am. Chem. Soc. 112 9445.

    Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990e).Nature (London) 348 89.

    Google Scholar 

  • Han, S., Rousseau, D. L., Giacometti, G., and Brunori, M. (1990f).Proc. Natl. Acad. Sci. USA 87 205.

    Google Scholar 

  • Han, S., Ching, Y.-C., Hammes, S. L., and Rousseau, D. L. (1991).Biophys. J. 60 45.

    Google Scholar 

  • Han, S., Song, S., Ching, Y.-C., and Rousseau, D. L. (1992). InTime-Resolved Vibrational Spectroscopy V, Springer Verlag, Tokyo, p. 20.

    Google Scholar 

  • Harmon, H. J., and Stringer, B. K. (1990).FEBS Lett. 267 167.

    Google Scholar 

  • Hill, B. C., Greenwood, C., and Nicholls, P. (1986).Biochim. Biophys. Acta 853 91.

    Google Scholar 

  • Hosler, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgiou, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M., Babcock, G. T., and Gennis, R. B. (1993).J. Bioen. Biomem. 25 121.

    Google Scholar 

  • Jones, M. G., Bickar, D., Wilson, M. T., Brunori, M., Colosimo, A., and Sarti, P. (1984).Biochem. J. 220 57.

    Google Scholar 

  • Kerr, E. A., and Yu, N.-T. (1988). InBiological Applications of Raman Spectroscopy (Spiro, T. G., ed.), Wiley, New York, Vol. 3, p. 39.

    Google Scholar 

  • Kitagawa, T. (1988). InBiological Applications of Raman Spectroscopy (Spiro, T. G., ed.), Wiley, New York, Vol. 3, p. 97.

    Google Scholar 

  • Larsen, R. W., Pan, L.-P., Musser, S. M., Li, Z., and Chan, S. I. (1992).Proc. Natl. Acad. Sci. USA 89 723.

    Google Scholar 

  • Lemieux, L. J., Calhoun, M. W., Thomas, J. W., Ingledew, W. J., and Gennis, R. B. (1992).J. Biol. Chem. 267 2105.

    Google Scholar 

  • Lou, B.-S., Larsen, R. W., Chan, S. I., and Ondrias, M. R. (1993).J. Am. Chem. Soc., in press.

  • Maison-Peteri, B., and Malmstrom, B. G. (1989).Biochemistry 28 3156.

    Google Scholar 

  • Maxwell, J. C., and Caughey, W. S. (1976).Biochemistry 15 388.

    Google Scholar 

  • Minagawa, J., Mogi, T., Gennis, R. B., and Anraku, Y. (1992).J. Biol. Chem. 267 2096.

    Google Scholar 

  • Mitchell, P. (1961).Nature (London) 191 144.

    Google Scholar 

  • Moody, A. J., and Rich, P. R. (1990).Biochim. Biophys. Acta 1015 205.

    Google Scholar 

  • Morikis, D., Champion, P. M., Springer, B. A., and Sligar, S. G., (1989).Biochemistry 28 4791.

    Google Scholar 

  • Murthy, M. R. N., Reid, T. J., Sicignano, A., Tanaka, N., and Rossmann, M. G. (1981).J. Mol. Biol. 152 465.

    Google Scholar 

  • Nagai, K., Kagimoto, T., Hayashi, A., Taketa, F., and Kitagawa, T. (1983).Biochemistry 22 1305.

    Google Scholar 

  • Nagai, M., Yoneyama, Y., and Kitagawa, T. (1989).Biochemistry 28 2418.

    Google Scholar 

  • Nagai, M., Yoneyama, Y., and Kitagawa, T. (1991).Biochemistry 30 6495.

    Google Scholar 

  • Ogura, T., Hon-nami, K., Oshima, T., Yoshikawa, S., and Kitagawa, T. (1983).J. Am. Chem. Soc. 105 7781.

    Google Scholar 

  • Ogura, T., Sone, N., Tagawa, K., and Kitagawa, T. (1984).Biochemistry 23 2826.

    Google Scholar 

  • Ogura, T., Takahashi, S., Shinzawa-Itoh, K., Yoshikawa, S., and Kitagawa, T. (1990a).J. Am. Chem. Soc. 112 5630.

    Google Scholar 

  • Ogura, T., Takahashi, S., Shinzawa-Itoh, K., Yoshikawa, S., and Kitagawa, T. (1990b).J. Biol. Chem. 265 14721.

    Google Scholar 

  • Ogura, T., Takahashi, S., Shinzawa-Itoh, H., Yoshikawa, S., and Kitagawa, T. (1991).Bull. Chem. Soc. Jpn. 64 2901.

    Google Scholar 

  • Oliverberg, M., and Malmstrom, B. G. (1991).Biochemistry 30 7053.

    Google Scholar 

  • Oliveberg, M., Brzezinski, P., and Malmstrom, B. G. (1989).Biochim. Biophys. Acta 977 322.

    Google Scholar 

  • Papadopoulos, P. G., Walter, S. A., Li, J., and Baker, G. M. (1991).Biochemistry 30 840.

    Google Scholar 

  • Perutz, M. F., Kilmartin, J. V., Nagai, K., Szabo, A., Simon, S. R. (1976).Biochemistry 15 378.

    Google Scholar 

  • Rousseau, D. L. (1981).J. Raman Spectrosc. 10 94.

    Google Scholar 

  • Rousseau, D. G., and Rousseau, D. L. (1992).J. Struct. Biol. 109 13.

    Google Scholar 

  • Sage, J. T., Morikis, D., and Champion, P. M. (1991).Biochemistry 30 1227.

    Google Scholar 

  • Saraste, M. (1990).Q. Rev. Biophys. 23 331.

    Google Scholar 

  • Sassaroli, M., Ching, Y.-C., Argade, P. V., and Rousseau, D. L. (1988).Biochemistry 27 2496.

    Google Scholar 

  • Shapleigh, J. P., Hosler, J. P., Tecklenburg, M. M. J., Kim, Y., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S. (1992).Proc. Natl. Acad Sci. USA 89 4786.

    Google Scholar 

  • Smulevich, G., Mauro, J. M., Fishel, L. A., English, A. M., Kraut, J., and Spiro, T. G. (1988).Biochemistry 27 5486.

    Google Scholar 

  • Sone, N., Ogura, T., and Kitagawa, T. (1986).Biochim. Biophys. Acta 850 139.

    Google Scholar 

  • Spiro, T. G., Smulevich, G., and Su, C. (1990).Biochemistry 29 4497.

    Google Scholar 

  • Steffans, G. C. M., Biewald, E., and Buse, G. (1987).Eur. J. Biochem. 164 295.

    Google Scholar 

  • Stevens, T. H., and Chan, S. I. (1981).J. Biol. Chem. 256 1069.

    Google Scholar 

  • Stevens, T. H., Bocian, D. D., and Chan, S. I. (1979a).FEBS Lett. 97 314.

    Google Scholar 

  • Stevens, T. H., Brudvig, G. W., Bocian, D. F., and Chan, S. I. (1979b).Proc. Natl. Acad. Sci. USA 76 3320.

    Google Scholar 

  • Thornstrom, P.-E., Soussi, B., Arvidsson, L., and Malmstrom, B. G. (1984).Chem. Scr. 24 230.

    Google Scholar 

  • Tsubaki, M., Hiwatashi, A., and Ichikawa, Y. (1986).Biochemistry 25 3563.

    Google Scholar 

  • Uno, T., Nishimura, Y., Tsuboi, M., Makino, R., Iizuka, T., and Ishimura, Y. (1987).J. Biol. Chem. 262 4549.

    Google Scholar 

  • Varotsis, C., and Babcock, G. T. (1990).Biochemistry 29 7357.

    Google Scholar 

  • Varotsis, C., Woodruff, W. H., and Babcock, G. T., (1989).J. Am. Chem. Soc. 111 6439.

    Google Scholar 

  • Varotsis, C., Woodruff, W. H., and Babcock, G. T. (1990a).J. Am. Chem. Soc. 112 1297.

    Google Scholar 

  • Varotsis, C., Woodruff, W. H., and Babcock, G. T. (1990b).J. Biol. Chem. 265 11131.

    Google Scholar 

  • Wikstrom, M. (1981).Proc. Natl. Acad. Sci. USA 78 4051.

    Google Scholar 

  • Wikstrom, M. (1987).Chem. Scr. 27B 53.

    Google Scholar 

  • Wikstrom, M. (1988).Chem. Scr. 28A 71.

    Google Scholar 

  • Wikstrom, M. (1989).Nature (London) 338 776.

    Google Scholar 

  • Wikstrom, M., Krab, K., and Saraste, M. (1981). InCytochrome Oxidase: A Synthesis, Academic Press, London.

    Google Scholar 

  • Woodruff, W. H., Einarsdottir, O., Dyer, R. B., Bagley, K. A., Palmer, G., Atherton, S. J., Goldbeck, R. A., Dawes, T. D., and Kliger, D. S. (1991).Proc. Natl. Acad. Sci. USA 88 2588.

    Google Scholar 

  • Yewey, G. L., and Caughey, W. S. (1988).Ann. N.Y. Acad. Sci. 550 22.

    Google Scholar 

  • Yonetani, T. (1960).J. Biol. Chem. 235 845.

    Google Scholar 

  • Yoshikawa, S., and Caughey, W. S. (1982).J. Biol. Chem. 257 412.

    Google Scholar 

  • Yoshikawa, S., Choc, M. G., O'Toole, M. C., and Caughey, W. S. (1977).J. Biol. Chem. 252 5498.

    Google Scholar 

  • Yu, N.-T., Kerr, E. A., Ward, B., and Chang, C. K. (1983).Biochemistry 22 4534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousseau, D.L., Ching, Yc. & Wang, J. Proton translocation in cytochromec oxidase: Redox linkage through proximal ligand exchange on cytochromea 3 . J Bioenerg Biomembr 25, 165–176 (1993). https://doi.org/10.1007/BF00762858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762858

Key words

Navigation