Skip to main content
Log in

Control of the Mitochondrial Permeability Transition Pore by High-Affinity ADP Binding at the ADP/ATP Translocase in Permeabilized Mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Low levels of ADP binding at the ADP/ATP translocase caused inhibition of the Ca2+-inducedpermeability transition of the mitochondrial inner membrane, when measured using the shrinkage assay on mitochondria, which have already undergone a transition. Inhibition was preventedby carboxyatractyloside, but potentiated by bongkrekic acid, which increased the affinity forinhibition by ADP. This suggests that inhibition was related to the conformation of thetranslocase. Ca2+ addition was calculated to remove most of the free ADP. Ca2+ added after ADPinduced a slow decay of the inhibition, which probably reflected the dissociation of ADP fromthe translocator. We conclude that the probability of forming a permeability transition pore(PTP) is much greater when the translocase is in the CAT conformation than in the BKAconformation, and, in the absence of CAT and BKA, the translocator is shifted between theBKA and CAT conformations by ADP binding and removal, even in deenergized mitochondria with no nucleotide gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bers, D. M., Patton, C. W., and Nuccitelli, R. (1994). Methods Cell Biol. 40, 3-29.

    Google Scholar 

  • Beutner, G., Rück, A., Riede, B., Welte, W., and Brdiczka, D. (1996). FEBS Lett. 396, 189-195.

    Google Scholar 

  • Brustovetsky, N., and Klingenberg, M. (1996). Biochemistry 35, 8483-8488.

    Google Scholar 

  • Buchanan, B. B., Eiermann, W., Riccio, P., Aquila, H., and Klingenberg, M. (1976). Proc. Natl. Acad. Sci. USA 73, 2280-2284.

    Google Scholar 

  • Crompton, M., Virji, S., and Ward, J. M. (1998). Eur. J. Biochem. 258, 729-735

    Google Scholar 

  • Fiore, C., Trezeguet, V., Le Saux, A., Roux, P., Schwimmer, C., Dianoux, A. C., Noel, F., Lauquin, G. J. M., Brandolin, G., and Vignais, P. V. (1998). Biochimie 80, 137-150.

    Google Scholar 

  • Halestrap, A. P., Woodfield, K.-Y., and Connern, C. P. (1997). J. Biol. Chem. 272, 3346-3354.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1979). Arch. Biochem. Biophys. 195, 460-467.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1980a). J. Membr. Biol. 54, 231-236.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1980b). Fed. Proc. 39, 1707.

    Google Scholar 

  • Hunter, D. R., Haworth, R. A., and Southard, J. H. (1976). J. Biol. Chem. 251, 5069-5077.

    Google Scholar 

  • Hunter, D. R., and Haworth, R. A. (1979). Arch. Biochem. Biophys. 195, 453-459.

    Google Scholar 

  • Le Quoc, K., and Le Quoc, D. (1988). Arch. Biochem. Biophys. 265, 249-257.

    Google Scholar 

  • Le Quoc, D., and Le Quoc, K. (1989). Arch. Biochem. Biophys. 273, 466-478.

    Google Scholar 

  • Leblanc, P., and Clauser, H. (1972). FEBS Lett. 23, 107-113.

    Google Scholar 

  • Novgorodov, S. A., Gudz, T. I., Brierley, G. P., and Pfeiffer, D. R. (1994). Arch. Biochem. Biophys. 311, 219-228.

    Google Scholar 

  • Novgorodov, S. A., Gudz, T. I., Milgrom, Y. M., and Brierley, G. P. (1992). J. Biol. Chem. 267, 16274-16282.

    Google Scholar 

  • Petronilli, V., Cola, C., Massari, S., Colonna, R., and Bernardi, P. (1993). J. Biol. Chem. 268, 21939-21945.

    Google Scholar 

  • Ruck, A., Dolder, M., Wallimann, T., and Brdiczka, D. (1998). FEBS Lett. 426, 97-101.

    Google Scholar 

  • Weidemann, M. J., Erdelt, H., and Klingenberg, M. (1970). Biochem. Biophys. Res. Commun. 39, 363-370.

    Google Scholar 

  • Woodfield, K., Ruck, A., Brdiczka, D., and Halestrap, A. P. (1998). Biochem. J. 336, 287-290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haworth, R.A., Hunter, D.R. Control of the Mitochondrial Permeability Transition Pore by High-Affinity ADP Binding at the ADP/ATP Translocase in Permeabilized Mitochondria. J Bioenerg Biomembr 32, 91–96 (2000). https://doi.org/10.1023/A:1005568630151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005568630151

Navigation