Skip to main content
Log in

Behavioral studies into the mechanism of eukaryotic chemotaxis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Recent behavioral studies designed to elucidate the mechanism of chemotaxis to cAMP in the eukaroyteDictyostelium discoideum are reviewed. In these studies, ambae were analyzed by the newly developed, computer-assisted dynamic morphology system while (1) chemotaxing in a spatial gradient of cAMP, (2) responding to repeated temporal waves of cAMP in the absence of a spatial gradient in a Sykes-Moore chamber, and (3) responding to rapid shifts in cAMP concentration. It is demonstrated that eukaryotic amebae do indeed have the capacity to assess the direction of a temporal gradient, which indicates that they must have a “memory” system for this purpose. It is also demonstrated that amebae regulate behavior in spatial and temporal gradients of chemoattractant through changes in: (1) velocity; (2) frequency of pseudopod formation; and (3) frequency of turning. Analogies to the bacterial system are apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara, F., andMonk, M. 1974. Signal propagation in the cellular slime mouldDictyostelium discoideum.J. Gen. Microbiol. 85:321–324.

    Google Scholar 

  • Berg, H.C., andBrown, D.A. 1972. Chemotaxis inEscherichia coli analyzed by three dimensional tracking.Nature 239:500–504.

    Google Scholar 

  • Bonner, J.T. 1947. Evidence for the formation of cell aggregates by chemotaxis in the development of the slime moldDictyostelium discoideum.J. Exp. Zool. 106:1–26.

    Google Scholar 

  • Boyd, A., andSimon, M. 1982. Bacterial chemotaxis.Annu. Rev. Physiol. 44:501–517.

    Google Scholar 

  • Brown P.A., andBerg, H.C. 1974. Temporal simulation of chemotaxis inEscherichia coli.Proc. Natl. Acad. Sci. U.S.A. 71:1388–1392.

    Google Scholar 

  • Devreotes, P.N. 1982. Chemotaxis, pp. 117–168,in W. F. Loomis (ed.). The Development ofDictyostelium discoideum. Academic Press, New York.

    Google Scholar 

  • Devreotes, P.N., Derstine, P.L., andSteck, T.L. 1978. Cyclic AMP relay inDictyostelium discoideum. Part 1. A technique to monitor responses to controlled stimuli.J. Cell. Biol. 80:291–299.

    Google Scholar 

  • Devreotes, P.N., Potel, M.J., andMacKay, S.A. 1983. Quantitative analysis of cyclic AMP waves mediating aggregation inDictyostelium discoideum.Dev. Biol. 96:405–415.

    Google Scholar 

  • Dicou, E.X., andBrachet, P. 1979. Multiple forms of an extracellular cAMP phosphodiesterase fromDictyostelium discoideum.Biochem. Biophys. Acta 578:232–242.

    Google Scholar 

  • Durston, A. 1974. Pacemaker activity during aggregation inDictyostelium discoideum.Dev. Biol. 37:255–235.

    Google Scholar 

  • Ennis, H.L., andSussman, M. 1958. The initiator cell for slime mould aggregation.Proc. Natl. Acad. Sci. U.S.A. 44:401–411.

    Google Scholar 

  • Futrelle, R.P., Traut, J., andMcKee, W.G. 1982. Cell behavior inDictyostelium discoideum: Preaggregation response to localized cyclic AMP pulses.J. Cell. Biol. 92:807–821.

    Google Scholar 

  • Geller, J.S., andBrenner, M. 1978. Measurements of metabolites during cAMP oscillations ofDictyostelium discoideum.J. Cell Physiol. 97:413–420.

    Google Scholar 

  • Gerisch, G. 1968. Cell aggregation and differentiation inDictyostelium discoideum.Curr. Top. Dev. Biol. 3:157–197.

    Google Scholar 

  • Green, A., andNewell, P. 1975. Evidence for the existence of two types of cyclic AMP binding site in aggregating cells ofDictyostelium discoideum.Cell 6:129–136.

    Google Scholar 

  • Gross, J.D., Peacey, M.J., andTrevan, D.J. 1976. Signal emission and signal propagation during early aggregation inDictyostelium discoideum.J. Cell Sci. 22:645–656.

    Google Scholar 

  • Herman, M., andSoll, D.R. 1984. A comparison of volume growth during bud and mycelium formation inCandida albicans: A single cell analysis.J. Gen. Microbiol. 130:2219–2228.

    Google Scholar 

  • Kessin, R.H., Orlow, S.J., Shapiro, R.I., andFranke, J. 1979. Binding of inhibitor alters kinetic and physical properties of extracellular cyclic AMP phosphodiesterase EC 3.1.4.17 fromDictyostelium discoideum.Proc. Natl. Acad. Sci. U.S.A. 76:5450–5454.

    Google Scholar 

  • Klein, C., andJuliani, M.H. 1977. cAMP induced changes in cAMP-binding sites inD. discoideum amebae.Cell 10:329–335.

    Google Scholar 

  • Konijn, T.M. andRaper, K.B. 1961. Cell aggregation inDictyostelium discoideum.Dev. Biol. 3:725–756.

    Google Scholar 

  • Konij, T.M., Van de Meene, J.G.C.,Bonner, J.T., andBarkley, D.S. 1967. The acrasin activity of adenosine-3′,5′-cyclic phosphate.Proc. Natl. Acad. Sci. U.S.A. 58:1152–1154.

    Google Scholar 

  • Konun, T., Barkley, D., Chang, Y.Y., andBonner, J.T. 1968. Cyclic AMP: A naturally occurring acrasin in the cellular slime molds.Am. Nat. 102:225–233.

    Google Scholar 

  • Koshland, D.E. 1980. Biochemistry of sensing and adaptation in a simple bacterial system.Annu. Rev. Biochem. 50:765–782.

    Google Scholar 

  • Macnab, R.M., andKoshland, D.E. 1972. Gradient sensing mechanism in bacterial chemotaxis.Proc. Natl. Acad. Sci. U.S.A. 69:2509–2512.

    Google Scholar 

  • Mato, J.M., Sogada, A., Nanjundiah, V., andKonun, T.M. 1975. Signal input for a chemotactic response in the cellular slime moldDictyostelium discoideum.Proc. Natl. Acad. Sci. U.S.A. 72:4991–4993.

    Google Scholar 

  • Roos, W., Nanjundiah, V., Malchow, D., andGerisch, G. 1975. Amplification of cAMP signals in aggregating cells ofDictyostelium discoideum.FEES Lett. 53:139–142.

    Google Scholar 

  • Shaffer, B.M. 1962. The Acrasina.Adv. Morphol. 2:109–182.

    Google Scholar 

  • Shaffer, B.M. 1975. Secretion of cAMP induced by cAMP in the cellular slime moldDictyostelium discoideum.Nature 255:549–552.

    Google Scholar 

  • Soll, D.R. 1988. “DMS,” a computer-assisted system for quantitating motility, the dynamics of cytoplasmic flow and pseudopod formation: Its application toDictyostelium chemotaxis.Cell. Motil. Cytoskel. 10:91–106.

    Google Scholar 

  • Soll, D.R., Voss, E., andWessels, D. 1988a. Development and application of the “Dynamic Morphology System” for the analysis of moving amebae.SPIE Proc. 832:21–30.

    Google Scholar 

  • Soll, D.R., Voss, E., Varnum-Finney, B., andWessels, D. 1988b. The “Dynamic Morphology System”: A method for quantitating changes in shape, pseudopod formation and motion in normal and mutant amebae ofDictyostelium discoideum.J. Cell. Biochem. 37:177–192.

    Google Scholar 

  • Springer, M.S., Goy, M.F., andAdler, J. 1977. Sensory transduction in bacteria: two complementary pathways of information processing that involve methylated proteins.Proc. Natl. Acad. Sci. U.S.A. 74:3312–3316.

    Google Scholar 

  • Staebell, M., andSoll, D.R. 1985. Temporal and spatial differences in cell wall expansion during bud and mycelium formation inCandida albicans.J. Gen. Microbiol. 131:1467–1480.

    Google Scholar 

  • Swanson, J.A., andTaylor, D.L. 1982. Local and spatially coordinated movements inDictyostelium discoideum amoebae during chemotaxis.Cell 28:225–232.

    Google Scholar 

  • Tomchik, S.J., andDevreotes, P.N. 1981. cAMP waves inDictyostelium discoideum: Demonstration by an isotope dilution fluorography technique.Science 212:443–446.

    Google Scholar 

  • Varnum, B., andSoll, D.R. 1984. Effects of cAMP on single cell motility inDictyostelium.J Cell Biol. 99:1151–1155.

    Google Scholar 

  • Varnum, B., Edwards, K.B., andSoll, D.R. 1975.Dictyostelium amebae alter motility differently in response in increasing versus decreasing temporal gradients of cAMP.J. Cell Biol. 101:1–5.

    Google Scholar 

  • Varnum-Finney, B., Edwards, K.B., Voss, E., andSoll, D.R. 1987a. Amebae ofDictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning evidence for a temporal mechanism in ameboid chemotaxis.Cell Motil. Cytoskel. 8:7–17.

    Google Scholar 

  • Varnum-Finney, B., Voss, E., andSoll, D.R. 1987b. Frequency and orientation of pseudopod formation ofDictyostelium discoideum amebae chemotaxing in a spatial gradient: Further evidence for a temporal mechanism.Cell Motil. Cytoskel. 8:18–26.

    Google Scholar 

  • Varnum-Finney, B., Schroeder, N. A., andSoll, D.R. 1988. Adaptation in the motility response to cAMP inDictyostelium discoideum.Cell Motil. Cytoskel. 9:9–16.

    Google Scholar 

  • Wessels, D., Soll, D.R., Knecht, D., Loomis, W.F., DeLozanne, A., andSpudich, J. 1988. Cell motility and chemotaxis inDictyostelium amebae lacking myosin heavy chain.Dev. Biol. 128:164–177.

    Google Scholar 

  • Zigmond, S.H. 1977. The ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors.J. Cell Biol. 75:606–616.

    Google Scholar 

  • Zigmond, S.H., andSullivan, S.J. 1979. Sensory Adaptation of Leukocytes to Chemotactic Peptides.J. Cell Biol. 82:517–527.

    Google Scholar 

  • Zigmond, S. H., Levitsky, H.I., andKreel, B.J. 1981. Cell polarity: An examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis.J. Cell Biol. 89:585–592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soll, D.R. Behavioral studies into the mechanism of eukaryotic chemotaxis. J Chem Ecol 16, 133–150 (1990). https://doi.org/10.1007/BF01021275

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021275

Key Words

Navigation