Skip to main content
Log in

Finding all solutions of nonlinearly constrained systems of equations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A new approach is proposed for finding allε-feasible solutions for certain classes of nonlinearly constrained systems of equations. By introducing slack variables, the initial problem is transformed into a global optimization problem (P) whose multiple global minimum solutions with a zero objective value (if any) correspond to all solutions of the initial constrained system of equalities. Allε-globally optimal points of (P) are then localized within a set of arbitrarily small disjoint rectangles. This is based on a branch and bound type global optimization algorithm which attains finiteε-convergence to each of the multiple global minima of (P) through the successive refinement of a convex relaxation of the feasible region and the subsequent solution of a series of nonlinear convex optimization problems. Based on the form of the participating functions, a number of techniques for constructing this convex relaxation are proposed. By taking advantage of the properties of products of univariate functions, customized convex lower bounding functions are introduced for a large number of expressions that are or can be transformed into products of univariate functions. Alternative convex relaxation procedures involve either the difference of two convex functions employed in αBB [23] or the exponential variable transformation based underestimators employed for generalized geometric programming problems [24]. The proposed approach is illustrated with several test problems. For some of these problems additional solutions are identified that existing methods failed to locate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horst, P. M. Pardalos and N. V. Thoai,Introduction to Global Optimization. Kluwer Academic Publishers, 1995.

  2. R. Horst and P. M. Pardalos.Handbook of Global Optimization. Kluwer Academic Publishers, 1995.

  3. F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming.Math. Opers. Res.,8:523, 1983.

    Google Scholar 

  4. I. P. Androulakis, C. D., Maranas, and C. A. Floudas. αBB: Global Optimization for Constrained Nonconvex Problems.J. Global Opt.,7(4), 1995 (forthcoming).

  5. A. Brooke, D. Kendrick and A. Meeraus.GAMS: A User's Guide. Scientific Press, Palo Alto, CA., 1988.

    Google Scholar 

  6. L. G. Bullard and L. T. Biegler. Iterative Linear Programming Strategies for Constrained Simulation.Computers chem. Engng.,15(4):239, 1991.

    Google Scholar 

  7. H. S. Chen and M. A. Stadtherr. On solving large sparse nonlinear equation systems.Comp. chem. Engnr.,8:1, 1984.

    Google Scholar 

  8. D. Davidenko.Dokl. Akad. Nauk USSR,88:601, 1953.

    Google Scholar 

  9. E. Doedel.AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Applied Mathematics, Caltech, Pasadena, CA, 1986.

    Google Scholar 

  10. I. S. Duff, J. Nocedal and J. K. Reid. The use of linear programming for the solution of sparse sets of nonlinear equations.SIAMJ. Sci. Stat. Comp.,8:99, 1987.

    Google Scholar 

  11. G. B. Ferraris and E. Tronconi. BUNSLI —a FORTRAN program for solution of systems of nonlinear algebraic equations.Computers chem. Engng,10:12, 1986.

    Google Scholar 

  12. C. B. Garcia and W. I. Zangwill.Pathways to Solutions, Fixed Points and Equilibria. Pentice Hall, 1981.

  13. E. R. Hansen.Global Optimization Using Interval Analysis. Marcel Dekkar, New York, NY, 1992.

    Google Scholar 

  14. P. Hansen, B. Jaumard and S. H. Lu. Global optimization of univariate Lipschitz functions: I. Survey and propoerties.Math. Prog.,55:251, 1992.

    Google Scholar 

  15. R. Horst and H. Tuy.Global Optimization. Springer-Verlag, 1st. edition, 1990.

  16. R. B. Kearfott, M. Dawande, K. Du and Ch. Hu. INTLIB, a Portable FORTRAN 77 Interval Standard Function Library,in press, 1994.

  17. R. B. Kearfott and M. Novoa. INTBIS, a Portable Interval Newton/Bisection Package.ACM Trans. Math. Soft.,16:152, 1990.

    Google Scholar 

  18. R. W. Klopfenstein.J. Assoc. Comput. Mach.,8:366, 1961.

    Google Scholar 

  19. E. Lahaye.C.R. Acad. Sci. Paris,198:1840, 1934.

    Google Scholar 

  20. J. Leray and J. Schauder.Ann. Sci. Ecole Norm Sup.,51:45, 1934.

    Google Scholar 

  21. D. G. Luenberger.Linear and Nonlinear Programming. Addisson-Wesley, Reading, MA, 1984.

    Google Scholar 

  22. C. D. Maranas and C. A. Floudas. Global Optimization for Molecular Conformation Problems.Ann. Oper. Res.,42:85, 1993.

    Google Scholar 

  23. C. D. Maranas and C. A. Floudas. Global Minimum Potential Energy Conformations of Small Molecules.Glob. Opt.,4:135, 1994a.

    Google Scholar 

  24. C. D. Maranas and C. A. Floudas. Global Optimization in Generalized Geometric Porgramming.submitted to Comp. chem. Engnr., 1994c.

  25. K. Meintjes and A. P. Morgan. Chemical Equilibrium Systems as Numerical Test Problmes.ACM Transactions on Mathematical Software,16(2): 143, 1990.

    Google Scholar 

  26. J. J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. InNumerical Analysis-Proceedings of the Biennial Conference, Lecture Notes in Mathematics, number 630, Berlin, Germany, 1987. Springer-Verlag.

    Google Scholar 

  27. A. P. Morgan.Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. Pentice-Hall, Inc., 1987.

  28. B. A. Murtagh and M. A. Saunders.MINOS5.0 Users Guide. Systems Optimization Laboratory, Dept. of Operations Research, Stanford University, CA., 1983. Appendix A: MINOS5.0, Technical Report SOL 83-20.

    Google Scholar 

  29. A. Neumaier.Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, UK, 1990.

    Google Scholar 

  30. J. R. Paloschi and J. D. Perkins. An implementation of quasi-Newton methods for solving sets of nonlinear equations.Comp. chem. Engnr.,12:767, 1988.

    Google Scholar 

  31. M. J. D. Powell.Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach, London, UK, 1970.

    Google Scholar 

  32. H. Ratschek and J. Rokne. Experiments using interval analysis for solving a circuit design problem.J. Glob. Opt.,3:501, 1993.

    Google Scholar 

  33. G. V. Reklaitis and K. M. Ragsdell.Engineering Optimization. John Wiley & Sons, New York, NY, 1983.

    Google Scholar 

  34. L. T. Watson, S. C. Billips and A. P. Morgan.ACM Trans. Math. Soft., 13:281, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maranas, C.D., Floudas, C.A. Finding all solutions of nonlinearly constrained systems of equations. J Glob Optim 7, 143–182 (1995). https://doi.org/10.1007/BF01097059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01097059

Key words

Navigation