Skip to main content
Log in

Calculation of the radiofrequency size effect in complex metals. I. Mean free path dependence of the resonance strength for diffuse or specular surface scattering

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Model calculations of line shapes and amplitudes appropriate to radio-frequency size effect resonances on “small” Fermi surface sheets in complex metals have been carried out using a perturbative technique. Detailed results are presented for high-symmetry sheets, with emphasis on the sphere and the circular cylinder; some discussion is also given to suggest what changes may occur in less regular cases. The calculated line shapes are in good agreement with experiment, both for diffuse surface scattering of the resonating electrons and also for specular surface scattering. The behavior of the amplitudes as a function of the mean free path indicates that the expression customarily used in analyzing data for the temperature dependence of the resonance strength should be modified. Except for the field region near onset, where the behavior is more complicated, we find % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabiqaaiaacaGaaeqabaWaaeaaeaaakeaacaWGZbGaeyyhIu% RaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaakiaac+cacaGGOaGa% aGymaiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWG4b% aaaOGaaiykaaaa!3F57!\[s \propto e^{ - x} /(1 - e^{ - 2x} )\] where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabiqaaiaacaGaaeqabaWaaeaaeaaakeaacaWG4bGaaeiiai% abggMi6MaaGnaalaaabaGaaGymaaqaaiaaikdaaaGaaeiuaiaac+ca% cqaH7oaBaaa!3AEC!\[x{\rm{ }} \equiv \frac{1}{2}{\rm{P}}/\lambda \], with P the orbit perimeter and λ the mean free path. This replaces the usually adopted form % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabiqaaiaacaGaaeqabaWaaeaaeaaakeaacaWGZbGaeyyhIu% RaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaakiaac+cacaGGOaGa% aGymaiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWG4b% aaaOGaaiykaaaa!3F57!\[s \propto e^{ - x} /(1 - e^{ - 2x} )\]. Furthermore, the mean free path dependence is found to be essentially independent of the degree of specularity, in contrast to previous theoretical results for “simple” metals. While the difference between the usual and the revised expressions for S(x) is not large at modest mean free paths (that is, for x ≳ 1), it can be quite substantial at larger values of λ. This is of importance when dealing with very pure metals at the lowest temperatures or when trying to assess the residual mean free path in samples of moderate purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Koch and R. E. Doezema, in Proc. 14th Int. Conf. Low Temp. Phys. (North-Holland, Amsterdam, 1975), Vol. 5, p. 134.

  2. V. F. Gantmakher, Rep. Prog. Phys. 37, 317 (1974); see also Ref. 1.

    Google Scholar 

  3. E. A. Kaner and V. L. Fal'ko, Sov. Phys.—JETP 24, 392 (1967).

    Google Scholar 

  4. G. E. Juras, Phys. Rev. 187, 784 (1969).

    Google Scholar 

  5. D. K. Wagner and R. Cochran, J. Low Temp. Phys. 18, 549 (1975); see also D. K. Wagner and R. C. Albers, J. Low Temp. Phys. 20, 593 (1975).

    Google Scholar 

  6. G. E. Juras, Phys. Rev. B 2, 2869 (1970).

    Google Scholar 

  7. P. B. Johnson and R. G. Goodrich, Phys. Rev. 14, 3286 (1976); V. A. Gasparov, Sov. Phys.—JETP 41, 1129 (1976); V. F. Gantmakher and V. A. Gasparov, Sov. Phys.—JETP 37, 864 (1973).

    Google Scholar 

  8. D. A. Boudreau and R. G. Goodrich, Phys. Rev. B 3, 3086 (1971).

    Google Scholar 

  9. D. G. de Groot, Thesis, Free University of Amsterdam (1974).

  10. J. F. Koch and C. C. Kuo, Phys. Rev. 143, 470 (1966); M. S. Khaikin, Adv. Phys. 18, 1 (1969); see also Ref. 1.

    Google Scholar 

  11. P. M. Marcus, Nat. Bur. Std. Circ. 519, 265 (1952).

    Google Scholar 

  12. R. E. Prange and T. W. Nee, Phys. Rev. 168, 779 (1968).

    Google Scholar 

  13. G. E. Juras, Phys. Rev. Lett. 24, 390 (1970).

    Google Scholar 

  14. P. H. Haberland and C. A. Shiffman, Phys. Rev. Lett. 19, 1337 (1967).

    Google Scholar 

  15. M. S. Khaikin, Sov. Phys.—JETP 14, 1269 (1962).

    Google Scholar 

  16. W. A. Reed, Phys. Rev. 188, 1184 (1969); J. H. Wood, Phys. Rev. 146, 432 (1966); A. Goldstein and S. Foner, Phys. Rev. 146, 442 (1966).

    Google Scholar 

  17. A. Fukumoto and M. W. P. Strandberg, Phys. Rev. 155, 685 (1967); P. H. Haberland, J. F. Cochran, and C. A. Shiffman, Phys. Rev. 184, 655 (1969).

    Google Scholar 

  18. D. G. Chatjigiannis, Thesis, Northeastern University (1974).

  19. J. E. Neighbor, C. A. Shiffman, D. G. Chatjigiannis, and S. P. Jacobsen, Phys. Rev. Lett. 27, 929 (1971).

    Google Scholar 

  20. D. Duchardt and C. A. Shiffman, in Proc. 14th Int. Conf. Low Temp. Phys. (North-Holland, Amsterdam, 1975), Vol. 4, p. 325.

    Google Scholar 

  21. G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. 195A, 336 (1948); see also E. A. Kaner and V. L. Fal'ko, Sov. Phys.—JETP 22, 1294 (1966).

    Google Scholar 

  22. M. Yaqub and J. F. Cochran, Phys. Rev. 137, A1182 (1965).

    Google Scholar 

  23. J. F. Koch and T. E. Murray, Phys. Rev. 186, 722 (1969).

    Google Scholar 

  24. J. R. Peverley, Phys. Cond. Matter 19, 51 (1975).

    Google Scholar 

  25. W. F. Druyvesteyn and A. J. Smets, J. Low Temp. Phys. 2, 619 (1970).

    Google Scholar 

  26. P. B. Johnson, J. C. Kimball, and R. G. Goodrich, Phys. Rev. B 14, 3282 (1976).

    Google Scholar 

  27. B. Castaing and P. Goy, J. Phys. C: Solid State Phys. 6, 2040 (1973).

    Google Scholar 

  28. A. B. M. Hoff and D. G. de Groot, J. Low Temp. Phys. 29, 467 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the National Science Foundation under Grant DMR76-12573.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchardt, D., Neighbor, J.E. & Shiffman, C.A. Calculation of the radiofrequency size effect in complex metals. I. Mean free path dependence of the resonance strength for diffuse or specular surface scattering. J Low Temp Phys 35, 53–87 (1979). https://doi.org/10.1007/BF00121722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121722

Keywords

Navigation