Skip to main content
Log in

Dissipative flow of superfluid4He through a small orifice by quantum and thermal nucleation of vortices

  • Papers Based On Oral Presentations
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Flow measurements in ultra-pure4He through a micron-size orifice at millikelvin temperatures show the transition from thermal to quantum nucleation of nanometer-size vortices below a crossover temperature of 0.147 K. Detailed analysis, similar to that done for macroscopic quantum tunnelling in superconducting junctions, yields parameters which accurately predict the mean value and the distribution width of the critical velocities at all temperatures. These observations establish the close relationship between this type of critical flow and negative ion motion in superfluid4He and strongly suggest that the underlying mechanism is identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Varoquaux, O. Avenel, M. Meisel,Can. J. Phys. 65, 1377 (1987).

    Google Scholar 

  2. O. Avenel, E. Varoquaux,Jpn. J. Appl. Phys. 26–3, 1798 (1987).

    Google Scholar 

  3. E. Varoquaux, W. Zimmermann, Jr., O. Avenel, inExcitations in Two-Dimensional and Three-Dimensional Quantum Fluids, ed. A.F.G. Wyatt, H.J. Lauter (Plenum Press, NY, 1991) NATO ASI Series B157 p. 343.

    Google Scholar 

  4. R.M. Bowley,J. Low Temp. Phys. 87, 137 (1992), P.V.E. McClintock, R.M. Bowley, inExcitations in Two-Dimensional and Three-Dimensional Quantum Fluids, loc. cit. p. 567.

    Google Scholar 

  5. E. Varoquaux, M.W. Meisel, O. Avenel,Phys. Rev. Lett. 57, 2291 (1986).

    Google Scholar 

  6. B.P. Beecken, W. Zimmermann, Jr.,Phys. Rev. B 35, 74, 1630 (1987).

    Google Scholar 

  7. A. Amar, Y. Sasaki, R.L. Lozez, J.C. Davis, R.E. Packard,Phys. Rev. Lett. 68, 2624 (1992).

    Google Scholar 

  8. L. Kramer,Phys. Rev. 179, 149 (1969).

    Google Scholar 

  9. V.L. Ginzburg, A.A. Sobyanin,Phys. Lett. 69A, 417 (1979) andSov. Phys. Usp. 19, 773 (1977).

    Google Scholar 

  10. J.S. Langer, J.D. Reppy,Prog. Low Temp. Phys., Vol VI, ed. C.J. Gorter (North-Holland, Amsterdam, 1970) Ch.1.

    Google Scholar 

  11. G.G. Ihas, O. Avenel, R. Aarts, R. Salmelin, E. Varoquaux, to be published inPhys. Rev. Lett., first reported at theAspen Winter Conference on Low Temperature Physics (Jan. 1992) by G.G. Ihas and at the APS Washington Meeting by O. Avenel,Bull. Am. Phys. Soc. 37, 929 (1992).

    Google Scholar 

  12. Earlier measurements5 in ultra-pure4He were too noisy to fully reveal the quantum plateau which was misinterpreted as an effect of residual3He impurities.

  13. V.I. Mel'nikov,Phys. Reports 209, 1 (1991).

    Google Scholar 

  14. An evaluation ofT q, based on dimensional arguments, has been given by R.E. Packard, S. Vitale,Phys. Rev. 45, 2512 (1992). The agreement with the value reported here must be viewed as fortuitous as the attempt frequency ωo depends on the detailed characteristics of the potential well in which the tunnelling particle resides.

    Google Scholar 

  15. A.O. Caldeira, A.J. Leggett,Ann. Phys. (N.Y.) 149, 374 (1983).

    Google Scholar 

  16. O. Avenel, E. Varoquaux, inProc. XIth Int. Cryogenic Eng. Conf., eds. G. Klipping, I. Klipping (Butterworths, Guilford, 1986), p.587.

    Google Scholar 

  17. P. Sudraud, P. Ballongue, E. Varoquaux, O. Avenel,J. Appl. Phys. 62, 2163 (1987).

    Google Scholar 

  18. Cryogenics Consultants, operations discontinued.

  19. Barry Controls GmbH Karl-Liebknecht-St. 30 — D-6096 Raunheim — Germany, model Al 133-15XX. The commercial mounts have been modified in the laboratory to lower the vertical cut-off frequency down to ∼ 1 Hz.

  20. Sylomer, from Getzner Chemie GmbH, Herrenau5, A-6700 Bludenz-Bürs, Austria. This by itself provides a high frequency cut-off of ∼ 15 Hz.

  21. Model QA-900, Sundstrand Data Control, Redmont, WA 98052 — USA.

  22. W. Zimmermann, Jr., O. Avenel, E. Varoquaux,Physica 165&166, 749 (1990).

    Google Scholar 

  23. E. Varoquaux, O. Avenel, G. Ihas, R. Salmelin,Physica B 178, 309 (1992).

    Google Scholar 

  24. US Department of the Interior, Bureau of Mines, 1100 S. Fillmore, Amarillo, Texas 79101.

  25. P.C. Hendry, P.V.E. McClintock,Cryogenics 27, 131 (1987).

    Google Scholar 

  26. A full study of the effect of3He on vortex nucleation will be published elsewhere.

  27. P. Hänggi, P. Talkner, M. Borkovec,Rev. Mod. Phys. 62, 250 (1990).

    Google Scholar 

  28. A. Larkin, K.K. Likharev, Yu.N. Ovchinnikov,Physica 126B, 414 (1984).

    Google Scholar 

  29. H. Grabert, P. Olschowski, U. Weiss,Phys. Rev. B 36, 1931 (1987). We note that, as the plateau ofv c(T) is quite flat and the transition region aboutT q very narrow, we are dealing with a weakly damped system. Also, for the potential leading to eq.(4), the frequencies at the bottom and at the top of the barrier are equal.

    Google Scholar 

  30. C.M. Muirhead, W.F. Vinen, R.J. Donnelly,Phil. Trans. R. Soc. London A 311, 433 (1984) and R.J. Donnelly,Quantized Vortices in Helium II, (Cambridge Univ. Press, Cambridge, 1991) Ch.8.

    Google Scholar 

  31. E.B. Sonin,Sov. Phys. JETP 37, 494 (1974).

    Google Scholar 

  32. A.L. Fetter, inThe Physics of Liquid and Solid Helium, Part I, ed. K.H. Bennemann, J.B. Ketterson, (Wiley, NY, 1976), Ch.3.

    Google Scholar 

  33. R.N. Hills, P.H. Roberts,J. Phys. C 11, 4485 (1978), P.H. Roberts, R.N. Hills, R.J. Donnelly,Phys. Lett. 70A, 437 (1979).

    Google Scholar 

  34. J.C. Davis, J. Steinhauer, K. Schwab, Yu.M. Mukharsky, A. Amar, Y. Sasaki, R.E. Packard, preprint and this Conference.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varoquaux, E., Ihas, G.G., Avenel, O. et al. Dissipative flow of superfluid4He through a small orifice by quantum and thermal nucleation of vortices. J Low Temp Phys 89, 207–216 (1992). https://doi.org/10.1007/BF00692593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692593

Keywords

Navigation