Skip to main content
Log in

A system model to predict the results of ultrasonic scattering experiments

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A system model is presented for the computation of ultrasonic scattering experiments. It includes a two-dimensional transducer model, whose diffraction field is given as an elastic plane wave spectral decomposition. An electromechanical reciprocity theorem is used to calculate the voltage at the terminal of the receiver. As a flaw-model, we use a strip-like crack, whose scattered field is calculated by the elastodynamic Huygens principle including mode conversion effects. Results in the time domain are presented for LLT- and 45° -tandem inspection situations and compared with measurements. Agreement between the model predictions and experimental results is typical to within 2 dB for average scan amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Chapman, An integrated model of ultrasonic NDT and its practical application, inMathematical Modeling in Non-Destructive Testing, M. Blakemore and G. A. Georgiou, eds., (Clarendon Press, Oxford, 1988).

    Google Scholar 

  2. F. Walte, W. Gebhardt, S. Ekinci, and Z. Jaszcuk, Ultraschallprüfung unter Benutzung der Wellenumwandlung. Teil II: Auslegung von Ultraschallprüfköpfen für die LLT-Technik,Materialprüfung 30:10 (1988).

    Google Scholar 

  3. J. A. Ogilvy, Model for the ultrasonic inspection of rough defects,Ultrasonics 27:69 (1989).

    Google Scholar 

  4. N. F. Haines, A Practical Model of Ultrasonic Reflection from Planar Surfaces, CEGB Report RD/B/N4995.

  5. R. B. Thompson and T. A. Gray, A model relating ultrasonic scattering measurements through liquid-solid interfaces to unbounded medium scattering amplitudes,J. Accoust. Soc. Am. 74:1279 (1983).

    Google Scholar 

  6. B. A. Auld, General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,Wave Motion 1:3 (1979).

    Google Scholar 

  7. P. Fellinger, Ein Verfahren zur numerischen Lösung elastischer Wellenausbreitungsprobleme im Zeitbereich durch direkte Diskretisierung der elastodynamischen Grundgleichungen, Dissertation am Lehrstuhl für Theoretische. Elektrotechnik der Universität-GH Kassel, Kassel, 1990.

  8. K. J. Langenberg, U. Aulenbacher, G. Bollig, P. Fellinger, H. Morbitzer, G. Weinfurter, P. Zanger, and V. Schmitz, Numerical modeling of ultrasonic scattering,Mathematical Modeling in NonDestructive Testing, M. Blakemore and G. A. Georgiou, eds. (Clarendon Press, Oxford, 1988).

    Google Scholar 

  9. J. D. Achenbach, A. K. Gautesen, and H. McMaken,Ray Methods for Waves in Elastic Solids (Pitman, Boston, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuhmacher, S., Zanger, P. & Langenberg, K.J. A system model to predict the results of ultrasonic scattering experiments. J Nondestruct Eval 13, 147–154 (1994). https://doi.org/10.1007/BF00728252

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00728252

Key words

Navigation