Skip to main content
Log in

The effects of focusing and refraction on Gaussian ultrasonic beams

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A scalar theory of the propagation of Gaussian ultrasonic beams through lenses and interfaces is presented. For radiation into a fluid, the Fresnel approximation is employed to derive the laws of propagation of Guassian beams (previously employed in the analysis of coherent optical systems). These are then generalized to situations commonly found in nondestructive evaluation by treating the effects of propagation through lenses and through curved interfaces at oblique incidence. A numerical example illustrates the ease with which insight into diffraction phenomena for complex geometries can be gained by this approach. The limitations imposed on the theory by aberrations and the scalar assumption are discussed, and the relationship of the Gaussian theory to the radiation of piston transducers is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Beyer and S. V. Letcher,Physical Ultrasonics (Academic Press, New York, 1969), chap. 1.

    Google Scholar 

  2. E. Cavanagh and B. D. Cook, Gaussian-Laguerre description of ultrasonic fields—numerical example: circular piston.J. Acoust. Soc. Am. 67(4):1136–1140 (1980).

    Google Scholar 

  3. J. N. Tjøtta and S. Tjøtta, An analytical model for the near field of a baffled piston transducer.J. Acoust. Soc. Am. 68(1):334–339 (1980).

    Google Scholar 

  4. R. New, R. I. Becker, and P. Wilhelmij, A limiting form for the near field of the baffled piston.J. Acoust. Soc. Am. 70(5):1518–1526 (1981).

    Google Scholar 

  5. G. R. Harris, Review of the transient theory for a baffled planar piston.J. Acoust. Soc. Am. 70(1):10–20 (1981).

    Google Scholar 

  6. R. B. Thompson and T. A. Gray, Analytical diffraction corrections to ultrasonic scattering measurements, inReview of Progress in Quantitative Nondestructive Evaluation 2, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1983), pp. 567–586.

    Google Scholar 

  7. J. Frohly, C. Bruneel, and E. Bridoux, Quantitative study of the aberrations for focussed acoustic plane waves obliquely incident upon a plane interface.J. Appl. Phys. 54:6234–6239 (1983).

    Google Scholar 

  8. R. K. Elsley, R. C. Addison, and L. J. Graham, Detection of flaws below curved surfaces, in ref. 6, in pp. 113–128.

    Google Scholar 

  9. J. Pott and J. G. Harris, Scattering of an acoustic Gaussian beam from a fluid-solid interface,J. Acoust. Soc. Am. 76:S64-S65(A) (1984).

    Google Scholar 

  10. F. D. Martin and M. A. Breazeale, A simple way to eliminate diffraction lobes emitted by ultrasonic transducers.J. Acoust. Soc. Am. 49:1668 (1971).

    Google Scholar 

  11. M. A. Breazeale, F. D. Martin, and B. Blackburn, Reply to ‘radiation pattern of partially electroded piezoelectric transducer.’”J. Acoust. Soc. Am. 70:1791 (1981).

    Google Scholar 

  12. R. O. Claus and P. S. Zerwekh, Ultrasonic transducer with a two-dimensional Gaussian field profile.IEEE Trans. Sonics Ultrasonics SU-30:36–39 (1983).

    Google Scholar 

  13. G. Du and M. A. Breazeale, The sound field of a Gaussian transducer.J. Acoust. Soc. Am. 76:S23(A) (1984).

  14. I. M. Mason, Two-dimensional surface-wave diffraction from an arbitrary source in an anisotropic medium,Electronics Lett. 7:344–345 (1971).

    Google Scholar 

  15. I. M. Mason and E. A. Ash, Acoustic surface wave beam diffraction on anisotropic substrates.J. Appl. Phys. 42:5354–5361 (1971).

    Google Scholar 

  16. I. M. Mason, Anisotropy, diffraction, scaling, surface wave lenses and focussing,J. Acoust. Soc. Am. 53:1123–1128 (1973).

    Google Scholar 

  17. I. M. Mason, E. Papadofrangakis, J. Chambers, and R. Ulrich, Optics of propagation in the anisotropic space of an acoustic surface wave disc delay line,Electronics Lett. 11:348–349 (1975).

    Google Scholar 

  18. A. E. Siegman,An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971).

    Google Scholar 

  19. A. Yariv,Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971).

    Google Scholar 

  20. J. Goodman,Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

    Google Scholar 

  21. I. S. Gradsthein and I. M. Ryzhik,Tables of Integrals, Series, and Products (Academic Press, New York, 1965).

    Google Scholar 

  22. B. D. Cook and W. J. Arnoult III, Gaussian-Laguerre/Hermite formulation for the near field of an ultrasonic transducer.J. Acoust. Soc. Am. 59:9–11 (1976).

    Google Scholar 

  23. E. Cavanagh and B. D. Cook, Lens in the near field of a circular transducer: Gaussian-Laguerre formulation.J. Acoust. Soc. Am. 69:345–351 (1981).

    Google Scholar 

  24. J. M. Coffey and R. K. Chapman, Applications of elastic scattering theory for smooth flat cracks to the quantitative prediction of ultrasonic defect detection and sizing.Nucl. Energy 22:319–333 (1983).

    Google Scholar 

  25. T. A. Gray, R. B. Thompson, and B. P. Newberry, Improvements in ultrasonic measurement modeling with applications to ultrasonic reliability, inReview of Progress in Quantitative NDE 4, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, in press).

  26. R. B. Thompson, V. G. Kogan, J. M. Rose, T. A. Gray, and E. Lopes, A comparison of the axial fields of Gaussian and piston transducer radiation after passage through cylindrical surfaces at oblique incidence,1983 Ultrasonics Symposium Proceedings (IEEE, New York, 1983), pp. 905–908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.B., Lopes, E.F. The effects of focusing and refraction on Gaussian ultrasonic beams. J Nondestruct Eval 4, 107–123 (1984). https://doi.org/10.1007/BF00566401

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566401

Key words

Navigation