Skip to main content
Log in

The human pharmacokinetics of cefotaxime and its metabolites and the role of renal tubular secretion on their elimination

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The pharmacokinetics of cefotaxime were investigated in human volunteers given constant intravenous infusions, intravenous bolus, and intramuscular doses of the drug. After intravenous dosing, the plasma levels of cefotaxime declined in a biphasic manner with a terminal half-life varying between 0.92 and 1.65 hr. Moreover, the pharmacokinetics were linear up to at least a 2.0 g dose for volume of distribution based on area (23.3–31.31), plasma clearance (249–288 ml/min), and renal clearance (151–177 ml/min). Renal tubular secretion of intact cefotaxime and each of its metabolites was demonstrated by its interaction with probenecid, although the ratio of drug to metabolites ultimately excreted in urine after probenecid was similar to that seen normally (54±6, 19±4, 6.5±0.7 and 5.5±0.7% for cefotaxime, DACM, M2, and M3, respectively, when calculated as a percentage of the dose). The observed half-lives of DACM, M2, and M3 were 2.3±0.4, 2.2 ±0.1 and 2.2 hr, respectively. However, when the true half-life of DACM was calculated (0.83±0.23 hr) it was not only significantly shorter than that observed but also shorter than that for intact cefotaxime. The plasma clearance of DACM (744 ±226 ml/min) was much higher than that of cefotaxime while the volume of distribution was of a similar order (56 ±241). When administered intramuscularly, there was good absorption of cefotaxime from the site of injection (92–94%) giving maximum plasma levels of the drug of between 30 and 35 mg/l at approximately 40 min after dosing. Thereafter, the plasma levels of cefotaxime declined in a monophasic manner with a half-life (1.0–1.2 hr) similar to that of the terminal half-life seen after intravenous administration. Lidocaine had no significant effect on either its absorption or elimination kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Draser, W. Farrell, A. J. Howard, C. Hince, T. Leung, and J. D. Williams. Activity of HR 756 againstHaemophilus Influenzae, Bacteriodes fragilis, and gram-negative rods.J. Antimicrob. Chemother. 4:445–450 (1978).

    Article  Google Scholar 

  2. G. Peters and G. Pulverer. Comparativein vitro activity of cefotaxime (HR756).Chemotherapy 26:177–183 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. J. B. Sosna, P. R. Murray, G. Modoff. Comparison ofin vitro activities of HR756 with cephalothin, cefoxitin and cepharnandole.Antimicrob. Agents Chemother. 14:876–879 (1978).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. M. H. Richmond.β-Lactamase stability of cefotaxime.J. Antimicrob. Chemother. 6(suppl A):13–17 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. D. S. Reeves, L. O. White, H. A. Holt, D. Bahari, M. J. Bywater, and R. P. Bax. Human metabolism of cefotaxime.J. Antimicrob. Chemotherapy 6(suppl A):93–101 (1980).

    Article  CAS  Google Scholar 

  6. J. Chamberlain, J. D. Coombes, D. Dell, J. M. Fromson, R. M. J. Ings, C. M. Macdonald, and J. McEwen. Metabolism of cefotaxime in animals and man.J. Antimicrob. Chemother. 6(suppl A):69–78 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. E. Schrinner, M. Limbert, L. Penasse, and A. Lutz. Antibacterial activity of cefotaxime and other newer cephalosporins (in vitro andin vivo).J. Antimicrob. Chemother. 6(suppl A):25–30 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. L. O. White, H. A. Holt, D. S. Reeves, M. J. Bywater, and R. P. Bax. Separation of assay of cefotaxime (HR756) and its metabolites in serum, urine, and bile. In J. D. Nelson, and C. Grassi (eds.),Current Chemotherapy and Infectious Disease. Proceedings of the 11th International Congress of Chemotherapy and the 19th Interscience Conference oq Antimicrobial Agents and Chemotherapy. The American Society for Microbiology, Washington D.C., 1980, pp. 153–154.

    Google Scholar 

  9. J. V. Bennett, J. L. Brodie, E. J. Benner, and W. M. N. Kirby. Simplified, accurate method for antibiotic assay of clinical specimens.Appl. Microbiol. 14:170–177 (1966).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. F. Esmieu, J. Guilbert, H. C. Rosenkilde, I. Ho, and A. Le Go. Pharmacokinetics of cefotaxime in normal human volunteers.J. Antimicrob. Chemother. 6(suppl A):83–92 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. K. C. Yeh and K. C. Kwan. A comparison of numerical integrating algorithms by trapezoidal, lagrange, and spline approximation.J. Pharmacokin. Biopharm. 6:79–98 (1978).

    Article  CAS  Google Scholar 

  12. J. B. Houston. Drug metabolite kinetics.Pharmacol. Ther. 15:521–552 (1982).

    Article  Google Scholar 

  13. W. J. Dixon and F. J. Massey. Analysis of variance. InIntroduction to Statistical Analysis. McGraw-Hill Book Co. Inc., New York, 1969, pp. 150–187.

    Google Scholar 

  14. R. E. Walpole. Tests for paired observation. InIntroduction to Statistics. Collier-Macmillan International, London, 1972, pp. 236–241.

    Google Scholar 

  15. W. J. Westlake. Design and statistical evaluation of bioequivalence studies in man. In J. Blanchard, R. J. Sawchuk, and B. B. Brodie (eds.),Principles and Perspectives in Drug Bioavailability. S. Karger, Basel, 1979, pp. 192–209.

    Google Scholar 

  16. W. J. Westlake. The design and analysis of comparative blood-level trials. In J. Swarbrick (ed.),Current Concepts in Pharmaceutical Sciences, Dosage Form Design and Bioavailability. Lea & Febiger, Philadelphia, 1973, pp. 149–179.

    Google Scholar 

  17. N. R. Draper and H. Smith. Fitting a straight line by least squares. In N. R. Draper and H. Smith (ed.),Applied Regression Analysis. John Wiley & Sons Inc., New York, 1966, pp. 7–26.

    Google Scholar 

  18. K. A. Browlee. Simple linear regression. In W. J. Dixon and F. J. Massey, Jr. (eds.),Introduction to Statistical Analysis. McGraw-Hill, New York, 1969, pp. 334–396.

    Google Scholar 

  19. K. P. Fu, P. Aswapokee, I. Ho, C. Matthigssen, and H. C. Neu. Pharmacokinetics of cefotaxime.Antimicrob. Agents Chemother. 16:592–597 (1970).

    Article  Google Scholar 

  20. R. Lüthy, R. Munch, J. Blaser, H. Bhend, and W. Siegenthaler. Human pharmacology of cefotaxime (HR756), a new cephalosporin.Antimicrob. Agents Chemother. 16:127–133 (1979).

    Article  PubMed Central  PubMed  Google Scholar 

  21. R. Lüthy, J. Blaser, A. Bonetti, H. Simson, R. Wise, and W. Siegenthaler. Comparative multiple dose pharmacokinetics of cefotaxime, moxalactam and ceftazidime.Antimicrob. Agents Chemother. 20:567–575 (1981).

    Article  PubMed Central  PubMed  Google Scholar 

  22. H. C. Neu, P. Aswapokee, K. P. Fu, I. Ho, and C. Matthigssen. Cefotaxime kinetics after intravenous and intramuscular injection of single and multiple doses.Clin. Pharmacol. Ther. 27:677–685 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. P. Brazeau. Inhibitors of tubular transport of organic compounds. In L. S. Goodman and A. Gilman (eds.),The Pharmacological Basis of Therapeutics. 3rd edition, The Macmillan Company, New York, 1965, pp. 873–875.

    Google Scholar 

  24. M. Gibaldi and M. A. Schwartz. Apparent effect of probenecid on the distribution of penicillin in man.Clin. Pharmacol. Ther. 9:345–349 (1968).

    CAS  PubMed  Google Scholar 

  25. D. S. Reeves, D. W. Bullock, M. J. Bywater, H. A. Holt, L. O. White, and D. P. Thornhill. The effect of probenecid on the pharmacokinetics and distribution of cefoxitin in healthy volunteers.Br. J. Clin. Pharmacol. 11:353–359 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. R. M. J. Ings, J. P. Fillastre, M. Godin, A. Leroy, and G. Humbert. The pharmacokinetics of cefotaxime and its metabolites in subjects with normal and impaired renal function.Rev. Infect. Dis. 4(suppl):S379–S391 (1982).

    Article  PubMed  Google Scholar 

  27. P. E. Gower and C. H. Dash. The pharmacokinetics of cefuroxime after intravenous injection.Eur. J. Clin. Pharmacol. 12:221–227 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. M. Osmosu, O. Togashi, and K. Fugimoto. Pharmacokinetic study of cefotaxime in rabbits.Chemotherapy 28:116–121 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ings, R.M.J., Reeves, D.S., White, L.O. et al. The human pharmacokinetics of cefotaxime and its metabolites and the role of renal tubular secretion on their elimination. Journal of Pharmacokinetics and Biopharmaceutics 13, 121–142 (1985). https://doi.org/10.1007/BF01059394

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059394

Key words

Navigation