Skip to main content
Log in

Dynamics of drug distribution. I. Role of the second and third curve moments

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Conventionally, the dynamics of distribution in the body is evaluated by the so-called distribution half-life (e.g., t 1/2,α but then the mean time of the distribution process is underestimated due tothe influence of elimination. By contrast, information about the dynamics of distribution contained in drug disposition curves can be extracted by the second and third curve moments, parameters that are related to the variance (VDRT)and skewness (SDRT)of residence time distributions; whereas the equilibrium state characterized by the volume of distribution (Vss), isdetermined by the mean residence time (MDRT)or the first curve moment. The approach represents a general noncompartmental analysis that is independent of a detailed structural model or a particular disposition function. Two parameters are introduced to characterize the dynamics of drug distribution: (i)the degree of departure of the system from “well-mixed” behavior of instantaneous distribution equilibrium (related to VDRT)and (ii)the mean time until equilibration is achieved (mean equilibration time, MEQT),which additionally depends on SDRT.Both parameters are quantitative measures of the dynamics of distribution and display explicit physical significance in terms of distribution within the corresponding noneliminating system. It is further shown that the so-called “distribution phase” in biexponential disposition curves is related to a monoexponential mixing curve of its corresponding noneliminating system with an equilibration or mixing half-time, t 1/2,M =t 1/2,α (Vβ/V * ss ), where V * ss denotes the distribution volume of the noneliminating system. The results are applied to mixing and disposition curves measured for acetaminophen in liver-ligated and intact rats, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A e :

Amount eliminated

AUC :

Area under the curve

\(\widehat{AUC}\) :

ObservedAUC

AUMC :

First moment of disposition curve (=MO D1

C(t) :

Blood (plasma) concentration

C D(t):

Disposition curve (eliminating system)

C M(t):

Mixing curve [C *(t)-C*(∞), noneliminating system]

C C(t):

Circulatory single-pass curve

C *(t):

Distribution curve approaching C*(∞)

CL :

Clearance

CS 3 :

Relative skewness

CTD :

Circulation time distribution

CV 2 :

Relative dispersion

D :

Dose (bolus intravenous injection)

°(t) :

Impulse function (Dirac's delta function)

θ :

Weighting parameter for biexponential distribution

E :

Body extraction ratio

Ex[T] :

Expected value of the random variableT

F(t) :

Cumulative distribution

f=dF/dt :

Density function

f(s) :

Laplace transform off(t)

λ :

Exponential coefficient

m(t) :

Renewal density

M(t) :

Renewal function

MCT :

Mean circulation time

MDRT :

Mean disposition residence time

MEQT :

Mean equilibration time

MO k :

Moment ofkth order

N(t) :

Number of recirculations upon timet

N ss(t):

Number of recirculations at steady state

N e :

Total number of recirculations (until elimination)

P :

Probability

Q :

Cardiac output

RTD :

Residence time distribution

S :

Pharmacokinetic system (eliminating orRTD system)

S * :

Noneliminating system

S c :

Eliminating circulatory single-pass (CTD) system

S *C :

Noneliminating circulatory single-pass (CTD) system

S k :

Random residence time until thekth recirculation

SCT :

Skewness of circulation time distribution

SDRT :

Skewness of disposition residence time distribution

T :

Random residence or transit time of a molecule

T c :

Random circulatory transit time of a molecule

t ci :

Circulation time of the ith circulation

T D :

Random disposition residence time

t 1/2,α :

Half-life of the alpha phase [C D (t) biexponential)]

t 1/2,M :

Distribution half-life [CM(t) monoexponential]

Vβ :

Terminal distribution volume (β-phase)

V ss :

Steady state distribution volume

VCT :

Variance of circulation time distribution

VDRT:

Variance of disposition residence time distribution

*:

Noneliminating system

A:

Arterial sampling

C:

Circulatory single-pass system

D:

Disposition system (recirculatory)

M:

Mixing curve (noneliminating system)

V:

Peripheral venous sampling

References

  1. M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves.J. Pharmacokin. Biopharm.,14:635–657 (1986).

    Article  CAS  Google Scholar 

  2. M. Weiss. Hemodynamic influences upon the variance of disposition residence time distribution.J. Pharmacokin. Biopharm. 11:63–75 (1983).

    Article  CAS  Google Scholar 

  3. L. D. Homer and A. Small. A unified theory for estimation of cardiac output, volumes of distribution and renal clearances from indicator dilution curves.J. Theoret. Biol. 64:535–550 (1977).

    Article  CAS  Google Scholar 

  4. K. S. Pang and J. R. Gillette. Complications in the estimation of hepatic blood flow in vivo by pharmacokinetic parameters.Drug. Metab. Dispos. 6:567–576 (1978).

    CAS  Google Scholar 

  5. M. Weiss. Theorems on log-convex disposition curves in drug and tracer kinetics.J. Theoret. Biol. 116:355–368 (1985).

    Article  CAS  Google Scholar 

  6. D. J. Cutler. A linear recirculation model for drug disposition.J. Pharmacokin. Biopharm. 7:101–116 (1979).

    Article  CAS  Google Scholar 

  7. M. Weiss and W. Forster. Pharmacokinetic model based on circulatory transport.Eur. J. Clin. Pharmacol. 16:287–293 (1979).

    Article  Google Scholar 

  8. J. M. van Rossum, J. E. G. M. de Bie, G. van Lingen, and H. W. A. Teeuwen. Pharmacokinetics from a dynamical systems point of view.J. Pharmacokin. Biopharm. 17:365–392 (1989).

    Article  Google Scholar 

  9. M. Weiss. Recirculatory models: A rigorous basis for a pharmacokinetic theory. In D. D. Breimer, D. J. A. Crommelin, and K. K. Midha (eds.),Topics in Pharmaceutical Sciences, F.I.P., The Hague, 1989, pp. 415–427.

    Google Scholar 

  10. D. R. Cox,Renewal Theory, Methuen, London, 1962.

    Google Scholar 

  11. W. Feller.An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York, 1966.

    Google Scholar 

  12. M. Brown. Bounds, inequalities, and monotonicity properties for some specialized renewal processes.Ann. Probability 8:227–240 (1980).

    Article  Google Scholar 

  13. M. Weiss. Nonidentity of the steady-state volumes of distribution of the eliminating and noneliminating system.J. Pharm. Sci. 80:908–910 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. A. Tsuji, K. Nashide, H. Minami, E. Nakashima, T. Terasaki, and T. Yamana. Physiologically based pharmacokinetic model for cefazolin in rabbits and its preliminary extrapolation to man.Drug Metab. Dispos. 13:729–739 (1985).

    CAS  PubMed  Google Scholar 

  15. S.-M. Huang and W. L. Chiou. Pharmacokinetics and tissue distribution of chlor-pheniramine in rabbits after intraveous administration.J. Pharmacokin. Biopharm. 9:711–722 (1981).

    Article  CAS  Google Scholar 

  16. A. H. Thomsen, H. L. Elliott, A. W. Kelman, P. A. Meredith, and B. Whiting. The pharmacokinetics and pharmacodynamics of lignocaine and MEGX in healthy subjects.J. Pharmacokin. Biopharm. 15:101–115 (1987).

    Article  Google Scholar 

  17. W. L. Chiou. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site.Clin. Pharmacokin. 17:275–290 (1989).

    Article  CAS  Google Scholar 

  18. M. Weiss. Definition of pharmacokinetic parameters: Influence of the sampling site.J. Pharmacokin. Biopharm. 12:167–175 (1984).

    Article  CAS  Google Scholar 

  19. L. D. Homer and P. K. Weathersby. The variance of the distribution of traversal times in a capillary bed.J. Theoret. Biol. 87:349–377 (1980).

    Article  CAS  Google Scholar 

  20. P. Veng-Pedersen. Theorems and implications of a model independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. I. Derivations and theoretical analysis.J. Pharmacokin. Biopharm. 12:627–648 (1984).

    Article  CAS  Google Scholar 

  21. G. P. Stec and A. J. Atkinson Jr. Analysis of the contributions of permeability and flow to intercompartmental clearance.J. Pharmacokin. Biopharm. 9:167–180 (1981).

    Article  CAS  Google Scholar 

  22. T. K. Henthorn, M. J. Avram, and T. C. Krejcie. Intravascular mixing and drug distribution: The concurrent disposition of thiopental and indocyanin green.Clin. Pharmacol. Ther. 45:56–65 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. S. Karlin and M. M. Taylor,A First Course in Stochastic Processes, Academic Press, New York, 1975, pp. 166–207.

    Google Scholar 

  24. M. Brown. Further monotonicity properties for specialized renewal processes.Ann. Probability 9:891–895 (1981).

    Article  Google Scholar 

  25. E. A. Nüesch. Noncompartmental approach in pharmacokinetics using moments.Drug Metab. Rev. 15:103–131 (1984).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Medical Research Council of Canada. M. Weiss was a Visiting Rosenstadt Professor at the University of Toronto. K. S. Pang is a recipient of the Faculty Development Award, Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M., Pang, K.S. Dynamics of drug distribution. I. Role of the second and third curve moments. Journal of Pharmacokinetics and Biopharmaceutics 20, 253–278 (1992). https://doi.org/10.1007/BF01062527

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062527

Key words

Navigation