Skip to main content
Log in

Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: Application of a stochastic model to the rat hindlimb

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A stochastic theory of drug transport in a random capillary network with permeation across the endothelial barrier is coupled with a model of tissue residence time of drugs assuming radial intratissue diffusion. Axial diffusion is neglected both in tissue as well as in the radially well-mixed vascular phase. The convective transport through the microcirculatory network is characterized by an experimentally determined transit time distribution of a nonpermeating vascular indicator. This information is used to identify three adjustable model parameters characterizing permeation, diffusion, and steady-state distribution into tissue. Predictions are made for the influence of distribution volume, capillary permeability, and tissue diffusion on transit time distributions. The role of convection (through the random capillary network), permeation, and diffusion as determinants of the relative dispersion of organ transit times has been examined. The relationship to previously proposed models of capillary exchange is discussed. Results obtained for lidocaine in the isolated perfused hindleg in rats indicate that although the contribution of intratissue diffusion to the dispersion process is relatively small in quantitative terms, it has a pronounced influence on the shape of the impulse response curve. The theory suggests that the rate of diffusion in muscle tissue is about two orders of magnitude slower than in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. Haselton, R. J. Roselli, R. E. Parker, and T. R. Harris. An effective-diffusivity model of pulmonary capillary exchange: General theory, limiting cases, and sensitivity analysis.Math. Biosci. 70:237–263 (1984).

    Article  Google Scholar 

  2. B. A. Luxon and R. A. Weisiger. Extending the multiple indicator dilution method to include slow intracellular diffusion.Math. Biosci. 113:211–230 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. K. B. Bischoff. Physiological pharmacokinetics.Bull. Math. Biophysics 48:309–322 (1986).

    Article  CAS  Google Scholar 

  4. S. Björkman, D. R. Stanski, H. Harashima, R. Dowrie, S. R. Harapat, D. R. Wada, and W. F. Ebling. Tissue distribution of fentanyl and alfentanil in the rat cannot be described by a blood flow limited model.J. Pharmacokin. Biopharm. 2:255–279 (1993).

    Article  Google Scholar 

  5. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: I. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–257 (1986).

    Article  CAS  Google Scholar 

  6. Y. Yano, K. Yamaoka, Y. Aoyama, and H. Tanaka. Two-compartment dispersion model for analysis of organ perfusion system of drugs by fast inverse Laplace transform (FILT).J. Pharmacokin. Biopharm. 17:179–202 (1989).

    Article  CAS  Google Scholar 

  7. Y. Yano, K. Yamaoka, H. Yasui, and T. Nakagawa. Effect of perfusion rate on the local disposition of cefixime in liver perfusion system based on two-compartment dispersion model.Drug Metab. Dispos. 19:1022–1027 (1991).

    CAS  PubMed  Google Scholar 

  8. J. M. Diaz-Garzia, A. M. Evans, and M. Rowland. Application of the axial dispersion model of hepatic drug elimination to the kinetics of diazepam in the isolated perfused rat liver.J. Pharmacokin. Biopharm. 20:171–193 (1992).

    Article  Google Scholar 

  9. Z. Hussein, A. J. McLachlan, and M. Rowland. Distribution kinetics of salicylic acid in the isolated perfused rat liver assessed using moment analysis and the two-compartment axial dispersion model.Pharm. Res. 11:1337–1345 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. J. B. Bassignthwaighte and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In E. M. Renkin and C. Michel (eds.),Handbook of Physiology, Section 2, Vol. 4, American Physiological Society, Bethesda, MD, 1984, pp. 549–626.

    Google Scholar 

  11. B. A. Luxon and R. A. Weisiger. A new method for quantitating intracellular transport: application to the thyroid hormone 3,5,3′-triiodothyronine.Am. J. Physiol. 263:G733-G741 (1992).

    CAS  PubMed  Google Scholar 

  12. M. Weiss. Moments of physiological transit time distributions and the time course of drug disposition in the body.J. Math. Biol. 15:305–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. M. Weiss. Hemodynamic influences upon the variance of disposition residence time distribution.J. Pharmacokin. Biopharm. 11:63–75 (1983).

    Article  CAS  Google Scholar 

  14. M. Weiss and K. S. Pang. The dynamics of drug distribution. I. Role of the second and third curve moment.J. Pharmacokin. Biopharm. 20:253–278 (1992).

    Article  CAS  Google Scholar 

  15. M. Weiss. Distribution kinetics in the body and single organs: moment analysis. In D. Z. D' Argenio (ed.),Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis, Vol. 2, Plenum Press, New York, 1995, pp. 89–100.

    Google Scholar 

  16. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling of hepatic elimination.J. Pharmacokin. Biopharm. 16:41–83 (1988).

    Article  CAS  Google Scholar 

  17. Z.-Y. Wu, L. P. Rivory, and M. S. Roberts. Physiology pharmacokinetics of solutes in the isolated perfused rat hindlimb: Characterization of the physiology with changing perfusate flow, protein content, and temperature using statistical moment analysis.J. Pharmacokin. Biopharm. 21:653–688 (1993).

    Article  CAS  Google Scholar 

  18. Z.-Y. Wu, S. E. Cross, and M. S. Roberts. Influence of physicochemical parameters and perfused flow rate on the distributuon of solutes in the isolated perfused rat hindlimb determined by the impulse-response technique.J. Pharm. Sci. 84:1020–1027 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. M. Shinnar, P. Naor, and S. Katz. Interpretation and evaluation of multiple tracer experiments.Chem. Eng. Sci. 27:1627–1642 (1972).

    Article  CAS  Google Scholar 

  20. C. W. Sheppard.Basic Principles of the Tracer Method, Wiley, New York, 1962.

    Google Scholar 

  21. M. Weiss. A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics.J. Math. Biol. 20:95–102 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Y. G. Sinai.Probability Theory, Springer, Berlin Heidelberg, 1992.

    Book  Google Scholar 

  23. R. D. Purves. Accuracy of numerical inversion of Laplace transforms for pharmacokinetic parameter estimation.J. Pharm. Sci. 84:71–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. M. Weiss. The relevance of residence time theory to pharmacokinetics.Eur. J. Clin. Pharmacol. 43:571–579 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. M. Weiss. Residence time distributions in pharmacokinetics: Behavioral and structural models. In D. Z. D' Argenio (ed.),Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis, Vol. 1, Plenum Press, New York, 1991, pp. 89–101.

    Chapter  Google Scholar 

  26. M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves.J. Pharmacokin. Biopharm. 14:635–657 (1986).

    Article  CAS  Google Scholar 

  27. W. C. Sangren and C. W. Sheppard. Mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment.Bull. Math. Biophysics 15:387–394 (1953).

    Article  CAS  Google Scholar 

  28. C. A. Goresky. Kinetic interpretation of hepatic multiple-indicator dilution studies.Am. J. Physiol. 245:G1-G12 (1983).

    CAS  PubMed  Google Scholar 

  29. C. A. Goresky, W. H. Ziegler, and G. G. Bach. Capillary exchange modeling. Barrier-limited and flow-limited distribution.Circ. Res. 27:739–764 (1970).

    Article  CAS  PubMed  Google Scholar 

  30. J. B. Bassingthwaighte, C. Y. Wang, and I. S. Chan. Blood-tissue exchange via transport and transformation by capillary endothelial cells.Circ. Res. 65:997–1020 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. J. B. Bassingthwaighte, I. S. J. Chan, and C. Y. Wang. Computationally efficient algorithms for convection-permeation-diffusion models for blood-tissue exchange.Ann. Biomed. Eng. 20:687–725 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. M. S. Roberts, S. Fraser, D. Wagner, and L. McLeod. Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: Effect of changes in perfusate flow and albumin concentration on sucrose and taurocholate.J. Pharmacokin. Biopharm. 18:209–234 (1990).

    Article  CAS  Google Scholar 

  33. A. C. Heatherington, R. E. Oliver, A. F. Jones, and M. Rowland. A physiological based pharmacokinetic model to describe distribution kinetics in non-metabolising tissues.Proc. of the Meeting of the International Society of Xenobiotics (ISSX)8:308 (1995).

    Google Scholar 

  34. A. C. Heatherington and M. Rowland. Estimation of reference spaces in the perfused rat hindlimb.Eur. J. Pharm. Sci. 2:261–270 (1994).

    Article  CAS  Google Scholar 

  35. B. A. Luxon and R. A. Weisiger. Sex differences in intracellular fatty acid transport: Role of cytoplasic binding proteins.Am. J. Physiol. 265:G831-G841 (1993).

    CAS  PubMed  Google Scholar 

  36. K. Sathirakul, H. Suzuki, K. Yasuda, M. Hanano, and Y. Sugiyama. Construction of a physiologically based pharmacokinetic model to describe the hepatobiliary excretion process of ligands: quantitative estimation of intracellular diffusion.Biol. Pharm. Bull. 16:273–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. H. Yasui, K. Yamaoka, and T. Nakagawa. New hepatocellular, diffusion model for analysis of hepatobiliary transport processes of drugs.J. Pharmacokin. Biopharm. 23:183–203 (1995).

    Article  CAS  Google Scholar 

  38. R. J. Stock, E. V. Cilento, and R. S. McCuskey. A quantitative study of fluorescein isothiocyanate-dextran transport in the microcirculation of the isolated perfused rat liver.Hepatology 9:75–82 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. I. R. Fenichel and S. B. Horowitz. The transport of nonelectrolytes in muscle as a diffusional process in cytoplasm.Acta Physiol. Scand. 60 (Suppl. 221):1–63 (1963).

    CAS  Google Scholar 

  40. R. Kawai, M. Lemaire, J.-L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125.J. Pharmacokin. Biopharm. 22:327–365 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We acknowledge the support by a University of Queensland Travel Grant, the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (M.W.), the Australian National Health and Medical Research Council and the Queensland and Northern New South Wales Lions Kidney and Medical Research Foundation (M.S.R.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M., Roberts, M.S. Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: Application of a stochastic model to the rat hindlimb. Journal of Pharmacokinetics and Biopharmaceutics 24, 173–196 (1996). https://doi.org/10.1007/BF02353488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353488

Key Words

Navigation