Skip to main content
Log in

Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins: I. Hydrophobic properties of transmembrane segments of Na+, K+-ATPase

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Audry, E., Dubost, J. P., Colleter, J. C., and Dallet, P. (1986).Eur. J. Med. Chem.-Chim. Ther. 21, 71–72.

    CAS  Google Scholar 

  • Brasseur, R. (1988).J. Biol. Chem. 263, 12,571–12,575.

    Article  CAS  Google Scholar 

  • Brasseur, R., De Loof, H., Ruysschaert, J. M., and Rosseneu, M. (1988).Biochim. Biophys. Acta 943, 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Brasseur, R. (1991).J. Biol. Chem. 266, 16,120–16,127.

    Article  CAS  Google Scholar 

  • Connolly, M. L. (1983).Science 221, 709–713.

    Article  CAS  PubMed  Google Scholar 

  • Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L., Berzofsky, J. A., and DeLisi, C. (1987).J. Mol. Biol. 195, 659–685.

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature 318, 618–624.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, D., Schwarz, E., Komaromy, M., and Wall, R. (1984).J. Mol. Biol. 179, 125–142.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, D., and McLachlan, A. D. (1986).Nature 319, 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Fasman, G. D. (1989). InPrediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum Press, New York, pp. 193–301.

    Chapter  Google Scholar 

  • Fauchere, J.-L., Quarendon, P., and Kaetterer, L. (1988).J. Mol. Graphics 6, 203–206.

    Article  CAS  Google Scholar 

  • Furet, P., Sele, A., and Cohen, N. C. (1988).J. Mol. Graphics 6, 182–189.

    Article  CAS  Google Scholar 

  • Gennis, R. B. (1989).Biomembranes: Molecular Structure and Function, Springer, New York.

    Book  Google Scholar 

  • Ghose, A. K., and Crippen, G. M. (1986).J. Comput. Chem. 7, 565–577.

    Article  CAS  Google Scholar 

  • Goldshleger, R., Tal, D. M., Moorman, J., Stein, W. D., and Karlish, S. J. D. (1992).Proc. Nat. Acad. Sci. (in press).

  • Gruschus, J. M., and Kuki, A. (1990).J. Comput. Chem. 11, 978–993.

    Article  CAS  Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E., and Downing, K. H. (1990).J. Mol. Biol. 213, 899–929.

    Article  CAS  PubMed  Google Scholar 

  • Honig, B. H., Hubbel, W. L., and Flewelling, R. F. (1986). InAnnual Review of Biophysics and Biophysical Chemistry (Engelman, D. M., Cantor, C. R., and Pollard, T. D., eds.), Vol. 15, Ann. Rev. Inc., Palo Alto, California, pp. 163–193.

    Google Scholar 

  • Jorgensen, P. L., and Andersen, J. P. (1988).J. Membr. Biol. 103, 95–120.

    Article  CAS  PubMed  Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157, 105–132.

    Article  CAS  PubMed  Google Scholar 

  • Lesser, G. J., and Rose, G. D. (1990).Proteins 8, 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Modyanov, N. N., Lutsenko, S. V., Chertova, E. N., and Efremov, R. G. (1990). InThe Sodium Pump: Structure, Mechanism, and Regulation (Kaplan, J. H., and De Weer, P., eds.), Vol. 46, Rockfeller University Press, New York, pp. 99–115.

    Google Scholar 

  • Modyanov, N. N., Lutsenko, S. V., Chertova, E. N., Efremov, R. G., and Gulyaev, D. I. (1992).Acta Pysiol. Scand. (in press).

  • Ovchinnikov, Yu. A., Arystarkhova, E. A., Arzamazova, N. M., Dzhandzhugazyan, K. N., Efremov, R. G., Nabiev, I. R., and Modyanov, N. N. (1988).FEBS Lett. 227, 235–239.

    Article  CAS  Google Scholar 

  • Pullman, A. (1988). InIon Pumps: Structure, Function, and Regulation (Stein, W., ed.), Alan Liss, New York, pp. 113–120.

    Google Scholar 

  • Rees, D. C., De Antonio, L., and Eisenberg, D. (1989).Science 245, 510–513.

    Article  CAS  PubMed  Google Scholar 

  • Robson, B., and Garnier, G. (1988).Introduction to Proteins and Protein Engineering, Elsevier, Amsterdam, pp. 155–194.

    Google Scholar 

  • Tanford, C. (1980).The Hydrophobic Effect, Wiley, New York.

    Google Scholar 

  • Viswanadhan, V. N., Ghose, A. K., Revankar, G. R., and Robins, R. K. (1989).J. Chem. Inf. Comput. Sci. 29, 163–172.

    Article  CAS  Google Scholar 

  • Walian, P. J., and Jap, B. K. (1990).J. Mol. Biol. 215, 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., and Pullman, A. (1991a).Chem. Phys. Lipids 57, 1–16.

    Article  CAS  Google Scholar 

  • Wang, J., and Pullman, A. (1991b).Biochim. Biophys. Acta 1070, 493–496.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, R.G., Gulyaev, D.I., Vergoten, G. et al. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins: I. Hydrophobic properties of transmembrane segments of Na+, K+-ATPase. J Protein Chem 11, 665–675 (1992). https://doi.org/10.1007/BF01024968

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024968

Key words

Navigation