Skip to main content
Log in

Multinuclear Magnetic Resonance Study of Zinc(II) and Cadmium(II) Complexing with Isothiocyanate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A study of zinc(II) and cadmium(II) complexes with isothiocyanate ion has been completed, using a low-temperature, multinuclear magnetic resonance technique that permits the observation of separate resonance signals for bound and free ligand, and Cd(II) metal ion. The Zn2+–NCS complexes were studied by 1H, 13C, and 15N NMR spectroscopy. In the 1H spectra, the intensity of the coordinated water signal, corresponding to a Zn(II) hydration number of six in the absence of NCS, decreases dramatically as this anion is added, indicating the complexing process involves more than a simple 1:1 ligand replacement. The 13C and 15N NMR spectra reveal signals for four species, most reasonably assigned to a series of tetrahedrally coordinated Zn2+–NCS complexes. In the Cd2+–NCS solution spectra, the 13C and 15N signals for four complexes also are observed and they are three line patterns, corresponding to a doublet from 113Cd J-coupling, and a dominant central peak, resulting from bonding to magnetically inactive Cd isotopes. The 113Cd spectra, showing signals for four complexes, correlate well in all respects with the 13C and 15N results, including coupling in specific cases. The spectral results for both metal ions reflect binding at the nitrogen atom of NCS, with the complexes changing from an octahedral to a tetrahedral configuration when doing so. Confirming evidence for these conclusions also was provided by several infrared measurements of these metal–ion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Kaim and B. Schwederski, eds. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life (Wiley, New York, 1994).

    Google Scholar 

  2. A. M. Calafat, H. Won, and L. G. Marzilli, J. Am. Chem. Soc. 119, 3656 (1997).

    Google Scholar 

  3. B. J. Goodfellow, P. Tavares, M. J. Romao, C. Czaja, F. Rusnak, J. LeGall, I. Moura, and J. J. G. Moura, J. Biol. Inorg. Chem. 1, 341 (1996).

    Google Scholar 

  4. J. J. Wilker and S. J. Lippard, J. Am. Chem. Soc. 117, 8682 (1995).

    Google Scholar 

  5. R. A. Manderville, J. F. Ellena, and S. M. Hecht, J. Am. Chem. Soc. 116, 10851 (1994).

    Google Scholar 

  6. I. M. Armitage and Y. Boulanger, NMR of Newly Accessible Nuclei, Vol. 2, P. Laszlo, ed., (Academic Press, New York, 1983).

    Google Scholar 

  7. J. Mason, ed. Multinuclear NMR, (Plenum Press, New York, 1987).

  8. P. D. Ellis, The Multinuclear Approach to NMR Spectroscopy, J. B. Lambert and F. G. Riddel, eds., (Reidel Publ., Netherlands, 1993).

    Google Scholar 

  9. J. N. S. Evans, Biomolecular NMR Spectroscopy, (Oxford University Press, New York, 1995).

    Google Scholar 

  10. P. J. Sadler and J. H. Viles, Inorg. Chem. 35, 4490 (1996).

    Google Scholar 

  11. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, and R. Perrigan, J. Solution Chem. 18, 313 (1989).

    Google Scholar 

  12. A. Fratiello, V. Kubo-Anderson, S. Azimi, T. Flores, E. Marinez, D. Matejka, R. Perrigan, and M. Vigil, J. Solution Chem. 19, 811 (1990).

    Google Scholar 

  13. A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. Perrigan, and B. Yao, J. Solution Chem. 21, 651 (1992).

    Google Scholar 

  14. A. Fratiello, V. Kubo-Anderson, S. Azimi, O. Chavez, F. Laghaei, and R. D. Perrigan, J. Solution Chemistry 22, 519 (1993).

    Google Scholar 

  15. A. Fratiello, V. Kubo-Anderson, S. Azimi, F. Laghaei, R. D. Perrigan, and F. Reyes, J. Solution Chem. 21, 1015 (1992).

    Google Scholar 

  16. A. Fratiello, V. Kubo-Anderson, E. L. Bolanos, O. Chavez, F. Laghaei, J. V. Ortega, and R. D. Perrigan, J. Solution Chem. 23, 1019, (1994).

    Google Scholar 

  17. A. Fratiello, V. Kubo-Anderson, E. L. Bolanos, O. Chavez, J. V. Ortega, R. D. Perrigan, L. Saenz, S. M. Stoll, and T. Thompson, J. Solution Chem. 25, 345 (1996).

    Google Scholar 

  18. A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. Perrigan, and B. Yao, J. Solution Chem. 20, 893 (1991).

    Google Scholar 

  19. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, D. Matejka, and R. Perrigan, J. Magn. Resonance, 83, 358 (1989).

    Google Scholar 

  20. A. Fratiello, E. L. Bolanos, D. Haigh, F. Laghaei, and R. D. Perrigan, J. Magn. Resonance A107, 56 (1994).

    Google Scholar 

  21. A. Fratiello, V. Kubo-Anderson, E. Bolanos, J. V. Ortega, R. D. Perrigan, L. Saenz, and S. M. Stoll, J. Solution Chem. 25, 1071 (1996).

    Google Scholar 

  22. A. Fratiello, V. Kubo-Anderson, E. Bolanos, J. V. Ortega, R. D. Perrigan, L. Saenz, S. M. Stoll, and K. Wong, J. Solution Chem. 26, 163 (1997).

    Google Scholar 

  23. A. Fratiello, V. Kubo-Anderson, E. Bolanos, O. Chavez, J. V. Ortega, R. D. Perrigan, A. Reyes, and S. M. Stoll, Mag. Resonance Chem. 33, 431 (1995).

    Google Scholar 

  24. A. Fratiello, V. Kubo-Anderson, A. Adanalyan, E. L. Bolanos, J. V. Ortega, R. D. Perrigan, L. Saenz, and T. Thompson, J. Solution Chem. 24, 1249 (1995).

    Google Scholar 

  25. T. Yamaguchi, K. Yamamoto, and H. Ohtaki, Bull. Chem. Soc. Jpn. 58, 3235 (1985).

    Google Scholar 

  26. O. W. Howarth, R. E. Richards, and L. M. Venanzi, J. Chem. Soc., p. 3335 (1964).

  27. A. Tramer, J. Chem. Phys. 59, 232 (1962).

    Google Scholar 

  28. J. L. Burmeister, Coordin. Chem. Rev. 3, 225 (1968).

    Google Scholar 

  29. S. Ishiguro, K. Yamamoto, and H. Ohtaki, Bull. Chem. Soc. Jpn. 59, 1009 (1986).

    Google Scholar 

  30. A. Fratiello, V. Kubo, B. Sanchez, and R. E. Schuster, Inorg. Chem. 10, 2552 (1971).

    Google Scholar 

  31. J. L. Burmeister, Coordin. Chem. Rev. 1, 205 (1966).

    Google Scholar 

  32. F. A. Cotton and G. Wilkinson, eds. Advanced Inorganic Chemistry (Wiley, New York, 1988).

    Google Scholar 

  33. P. S. Pregosin, H. Streit, and L. M. Venanzi, Inorg. Chim. Acta 38, 237 (1980).

    Google Scholar 

  34. J. Glerup, P. A. Goodson, D. J. Hodgson, and K. Michelsen, Inorg. Chem., 34, 6255 (1995).

    Google Scholar 

  35. O. Schlager, K. Wieghardt, H. Grondey, A. Rufinska, and B. Nuber, Inorg. Chem. 34, 6440 (1995).

    Google Scholar 

  36. H. Maumela, R. D. Hancock, L. Carlton, J. H. Reibenspies, and K. P. Wainwright, J. Am. Chem. Soc. 117, 6698 (1995).

    Google Scholar 

  37. M. B. Inoue, P. Oram, M. Inoue, and Q. Fernando, Inorg. Chim. Acta, 246, 401 (1996).

    Google Scholar 

  38. P. J. Baillie, N. Choi, L. F. Lindoy, M. McPartlin, H. R. Powell, and P. A. Tasker, J. Chem. Soc. Dalton Trans., p. 3039 (1996).

  39. T. Takayama, S. Ohuchida, Y. Koike, M. Watanabe, D. Hashizume, and Y. Ohashi, Bull. Chem. Soc. Jpn. 69, 1579 (1996).

    Google Scholar 

  40. H. J. Jakobsen and P. D. Ellis, J. Phys. Chem. 85, 3367 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratiello, A., Kubo-Anderson, V., Lee, D.J. et al. Multinuclear Magnetic Resonance Study of Zinc(II) and Cadmium(II) Complexing with Isothiocyanate. Journal of Solution Chemistry 27, 331–359 (1998). https://doi.org/10.1023/A:1022675615486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022675615486

Navigation