Skip to main content
Log in

The hydration of anions in nonaqueous media

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A very simple isopiestic method based on that of S. Christian is used for measuring the salting-in of water into nonpolar, low-volatility solvents by tetraalkylammonium salts. The quantity of excess water which is dissolved in such solvents is directly proportional to the salt concentration and is sharply dependent on the nature of the anion but is nearly insensitive to that of the R4N+ cation. The hydration ratioH, which we define as the moles of excess solubilized water per mole of R4N+ X, is directly relatable to the enthalpy of hydration of the anion X in several solvents and in the gas phase. The quantityH is also correlated with many free-energy terms including those for the Hofmeister lyotropic series, for the ability of the anions to salt nonelectrolytes out of water, for the free-energy terms for separation of these ions by reverse osmosis membranes, and for their nucleophilicities. A surprising (but not unprecedented) feature of the hydration ratio is that it, rather than its logarithm, behaves as a free-energy term. It is proposed that all these properties have in common the free energy of hydration of the anions, and this notion is supported by a close correspondence between the anionic hydration ratio and their hydrogen-bonding energies with proton donors in aprotic solvents. The results support scattered observations by other workers that isolated water molecules do not have an unusual inherent affinity for anions. Accordingly, large anionic hydration energies in bulk aqueous media reflect extensive cooperative interactions in the solvent. Implications for nucleophilic activity in phase transfer catalysis and enzyme activity are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See Empedocles,Encyclopedia Britannica.

  2. Water, A Comprehensive Treatise, F. Franks, ed. Vols. 1–5 (Plenum Press, New York, 1972–1975).

    Google Scholar 

  3. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water (Oxford University Press, New York, 1969).

    Google Scholar 

  4. N. E. Ernest Dorsey,Properties of Ordinary Water-Substance, Am. Chem. Soc., Monograph Series No. 81 (Reinhold, New York, 1940).

    Google Scholar 

  5. J. L. Kavanau,Water and Solute-Water Interactions (Holden-Day, San Francisco, 1964).

    Google Scholar 

  6. C. Tanford,The Hydrophobic Effect (Wiley, New York, 1973).

    Google Scholar 

  7. R. L. Kay,The Physical Chemistry of Aqueous Solutions (Plenum, New York, 1973).

    Google Scholar 

  8. R. Lumry and S. Rajender,Biopolymers 9, 1125 (1970).

    Google Scholar 

  9. Water, A Comprehensive Treatise, F. Franks, ed., Vol. 2 (Plenum Press, New York, 1973), p. 371 and following.

    Google Scholar 

  10. S. C. Mohr, W. D. Wilk, and G. M. Barrow,J. Am. Chem. Soc. 87, 3048 (1965).

    Google Scholar 

  11. R. L. Benoit and S. Y. Lam,J. Am. Chem. Soc. 96, 7385 (1976).

    Google Scholar 

  12. R. L. Benoit and C. Buisson,Inorg. Chim. Acta 7, 256 (1973).

    Google Scholar 

  13. G. Choux and R. L. Benoit,J. Am. Chem. Soc. 91, 6221 (1969).

    Google Scholar 

  14. T. Kenjo and R. M. Diamond,J. Inorg. Nucl. Chem. 36, 183 (1974).

    Google Scholar 

  15. T. Kenjo and R. M. Diamond,J. Phys. Chem. 76, 2454 (1972).

    Google Scholar 

  16. T. Kenjo, S. Brown, E. Held, and R. M. Diamond,J. Phys. Chem. 76, 1775 (1972).

    Google Scholar 

  17. D. J. Turner, A. Beck, and R. M. Diamond,J. Phys. Chem. 72, 2831 (1968).

    Google Scholar 

  18. D. R. Cogley, J. N. Butler, and E. Grunwald,J, Phys. Chem. 75, 1477 (1971).

    Google Scholar 

  19. I. M. Kolthoff,Anal. Chem. 46, 1992 (1974).

    Google Scholar 

  20. I. M. Kolthoff and M. K. Chantooni, Jr.,J. Am. Chem. Soc. 91, 6907 (1969).

    Google Scholar 

  21. I. M. Kolthoff and M. K. Chantooni, Jr.,J. Am. Chem. Soc. 91, 25 (1969).

    Google Scholar 

  22. I. M. Kolthoff and M. K. Chantooni, Jr.,Anal. Chem. 39, 1080 (1967).

    Google Scholar 

  23. M. K. Chantooni, Jr., and I. M. Kolthoff,J. Am. Chem. Soc. 89, 1582 (1967).

    Google Scholar 

  24. I. M. Kolthoff and T. B. Reddy,Inorg. Chem. 1, 189 (1962).

    Google Scholar 

  25. I. D. Kuntz, Jr., and C. J. Cheng,J. Am. Chem. Soc. 97, 4852 (1975).

    Google Scholar 

  26. R. P. Taylor and I. D. Kuntz, Jr.,J. Phys. Chem. 74, 4573 (1970).

    Google Scholar 

  27. R. P. Taylor and I. D. Kuntz, Jr.,J. Am. Chem. Soc. 92, 4813 (1970).

    Google Scholar 

  28. R. P. Taylor and I. D. Kuntz, Jr.,J. Am. Chem. Soc. 94, 7963 (1972).

    Google Scholar 

  29. H. S. Frank,J. Chem. Phys. 13, 478, 493 (1945); H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  30. H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).

    Google Scholar 

  31. G. Nemethy and H. A. Scheraga,J. Chem. Phys. 36, 3382, 3401 (1962).

    Google Scholar 

  32. Water, A Comprehensive Treatise, F. Franks, ed., Vol. 3 (Plenum Press, New York, 1973), Chap. 1.

    Google Scholar 

  33. F. Franks and D. J. G. Ives,Q. Rev. Chem. Soc. 20, 1 (1966).

    Google Scholar 

  34. T. S. Sarma and J. C. Ahluwalia,Chem. Soc. Rev. 2, 203 (1973).

    Google Scholar 

  35. J. E. Gordon,The Organic Chemistry of Electrolyte Solutions (Wiley, New York, 1975).

    Google Scholar 

  36. A. P. Krueger and E. J. Reed,Science 193, 1209 (1976).

    Google Scholar 

  37. E. M. Arnett, N. Hornung, and R. Minasz,Colloques Internationaux du C.N.R.S. No. 246—L'Eau et les Systems Biologiques, Paris, 1975, p. 89.

  38. S. D. Christian, H. E. Affsprung, J. R. Johnson, and J. D. Worley,J. Chem. Educ. 40, 419 (1963).

    Google Scholar 

  39. J. R. Johnson, P. J. Kilpatrick, S. D. Christian, and H. E. Affsprung,J. Phys. Chem. 72, 3223 (1968).

    Google Scholar 

  40. S. D. Christian, A. A. Taha, and B. W. Gash,Q. Rev. Chem. Soc. 24, 20 (1970).

    Google Scholar 

  41. J. Mitchell, Jr., and D. M. Smith,Aquametry (Interscience, New York, 1948).

    Google Scholar 

  42. J. Mitchell, Jr., inTreatise on Analytical Chemistry, I. M. Kolthoff, P. J. Elving, and E. B. Sandell, eds., Part II, Vol. 1 (Interscience, New York, 1962).

    Google Scholar 

  43. D. D. Perrin, W. L. E. Armarego, and D. R. Perrin,Purification of Laboratory Chemicals (Pergamon Press, London, 1966).

    Google Scholar 

  44. T. Tarui,J. Inorg. Nucl. Chem. 37, 1213 (1975).

    Google Scholar 

  45. D. J. Eatough, J. J. Christensen, and R. M. Izatt,Experiments in Thermometric Titrimetry and Titration (Brigham Young University Press, Provo, Utah, 1974).

    Google Scholar 

  46. B. G. Cox, G. R. Hedwig, A. J. Parker, and D. W. Watts,Aust. J. Chem. 27, 477 (1974).

    Google Scholar 

  47. E. M. Arnett, and D. R. McKelvey,J. Am. Chem. Soc. 88, 2598 (1966).

    Google Scholar 

  48. S. Goldman and W. C. Duer,Can. J. Chem. 52, 3919 (1974).

    Google Scholar 

  49. Y. Yamamoto, T. Tarumoto, and E. Ewamoto,Anal. Chim. Acta 64, 1 (1973);

    Google Scholar 

  50. Y. Yamamoto, T. Tarumoto, and T. Tarui,Bull. Chem. Soc. Jpn 46, 1466 (1973).

    Google Scholar 

  51. E. Charles Evers, Thesis, Brown University, May 1941.

  52. G. J. Janz and R. P. T. Tompkins,Nonaqueous Electrolytes Handbook, Vol. 1, Sections III-F-3 and III-G-1a (Academic Press, New York, 1972).

    Google Scholar 

  53. L. P. Hammett,Physical Organic Chemistry, 2nd ed. (McGraw-Hill, New York, 1970), pp. 16–19; J. E. Leffler and E. Grunwald,Rates and Equilibria of Organic Reactions (Wiley, New York, 1963), pp. 33–38.

    Google Scholar 

  54. P. Kebarle, inIons and Ion Pairs in Organic Reactions, M. Szwarc, ed., Vol. 1, (Wiley-Interscience, New York, 1972).

    Google Scholar 

  55. P. Kebarle, inModern Aspects of Electrochemistry, B. E. Conway and J. O'M. Bockris, eds., Vol. 9 (Plenum Press, New York, 1974).

    Google Scholar 

  56. W. R. Davidson and P. Kebarle,J. Am. Chem. Soc. 98, 6133 (1976).

    Google Scholar 

  57. F. Hofmeister,Arch. Exp. Pathol. 24, 242 (1888);27, 395 (1890).

    Google Scholar 

  58. P. H. von Hippel,Colloques Internationaux du C.N.R.S. No. 246—L'Eau et les Systems Biologiques, Paris, 1975, p. 15.

  59. P. H. von Hippel and T. Schleich,Acc. Chem. Res. 2, 257 (1969).

    Google Scholar 

  60. S. Loeb,Desalination by Reverse Osmosis, V. Merten, ed. (M.I.T. Press, Cambridge, Massachusetts, 1966), p. 86.

    Google Scholar 

  61. S. Sourirajan,Reverse Osmosis (Academic Press, New York, 1970), pp. 28–29.

    Google Scholar 

  62. T. Matsuura, L. Pageau, and S. Sourirajan,J. Appl. Polym. Sci. 19, 179 (1975).

    Google Scholar 

  63. J. M. Dickson, T. Matsuura, P. Blais, and S. Sourirajan,J. Appl. Polym. Sci. 19, 801 (1975).

    Google Scholar 

  64. P. H. von Hippel and A. Hamabata,J. Mechanochem. Cell Motil. 2, 127 (1973).

    Google Scholar 

  65. H. K. Lonsdale, inIndustrial Processing with Membranes, R. E. Lacey and S. Loeb, eds. (Wiley, New York, 1972), p. 155.

    Google Scholar 

  66. H. H. P. Fang and E. S. K. Chian,J. Appl. Polym. Sci. 19, 2889 (1975).

    Google Scholar 

  67. G. Eisenman,Proc. 23rd Int. Congr. Phys. Sci., Tokyo (Excerpta Med. Found., Amsterdam, 1965), pp. 489–506.

    Google Scholar 

  68. R. M. Diamond and E. M. Wright,Ann. Rev. Physiol. 31, 581 (1969).

    Google Scholar 

  69. F. A. Long and W. F. McDevit,Chem. Rev. 51, 119 (1952).

    Google Scholar 

  70. V. F. Sergeeva,Russ. Chem. Rev. 34, 309 (1965).

    Google Scholar 

  71. B. E. Conway, J. E. Desnoyers, and A. C. Smith,Philos. Trans. Roy. Soc. London, 389 (1964).

  72. C. V. Krishnan and H. L. Friedman,J. Solution Chem. 3, 727 (1974).

    Google Scholar 

  73. J. E. Gordon,The Organic Chemistry of Electrolyte Solutions (Wiley-Interscience, New York, 1975), pp. 10–34.

    Google Scholar 

  74. D. R. Robinson and W. P. Jencks,J. Am. Chem. Soc. 87, 2470 (1965).

    Google Scholar 

  75. W. P. Jencks,Catalysis in Chemistry and Enzymology (McGraw-Hill, New York, 1969), Chap. 7.

    Google Scholar 

  76. E. D. Goddard, O. Kao, and H. C. Kung,J. Colloid Interface Sci. 27, 616 (1968), J. Ralston and T. W. Healy,J. Colloid Interface Sci. 42, 629 (1973).

    Google Scholar 

  77. J. E. Desnoyers and F. M. Ichhaporia,Can. J. Chem. 47, 4639 (1969).

    Google Scholar 

  78. R. L. Bergen, Jr., and F. A. Long,J. Phys. Chem. 60, 1131 (1956).

    Google Scholar 

  79. M. Alexandre and P. Lindenberg,Compt. Rend. 276, 721 (1948).

    Google Scholar 

  80. R. J. Lavese and W. J. Canady,J. Phys. Chem. 65, 1240 (1961).

    Google Scholar 

  81. W. Proudlock and D. Rosenthal,J. Phys. Chem. 73, 1695 (1969).

    Google Scholar 

  82. R. W. Taft, D. Gurka, L. Joris, P. von R. Schleyer, and J. W. Rakshys,J. Am. Chem. Soc. 91, 4801 (1969).

    Google Scholar 

  83. R. S. Drago,Struct Bonding (Berlin) 15, 73 (1973).

    Google Scholar 

  84. J. E. Gordon,J. Am. Chem. Soc. 94, 650 (1972); M. J. Tait and F. Franks,Nature 230, 91 (1971).

    Google Scholar 

  85. J. L. Beauchamp,Annu. Rev. Phys. Chem. 22, 527 (1971).

    Google Scholar 

  86. J. F. Bunnett,Annu. Rev. Phys. Chem.,14, 271 (1963);

    Google Scholar 

  87. F. L. Schadt, T. W. Bentley, and P. v. R. Schleyer,J. Am. Chem. Soc. 98, 7667 (1976).

    Google Scholar 

  88. R. C. Dougherty and D. Roberts,Org. Mass. Spectrom. 8, 81 (1974).

    Google Scholar 

  89. R. G. Pearson, H. Sobel, and J. Songstad,J. Am. Chem. Soc. 90, 3191 (1968).

    Google Scholar 

  90. R. J. Pearson,Advances in Linear Free Energy Relationship, N. B. Chapman and J. Shutter, ed. (Plenum Press, New York, 1972).

    Google Scholar 

  91. L. E. Strong and C. A. Kraus,J. Am. Chem. Soc. 72, 166 (1950).

    Google Scholar 

  92. A. C. Knipe,J. Chem. Educ. 53, 618 (1976).

    Google Scholar 

  93. C. M. Stark and R. M. Owens,J. Am. Chem. Soc. 95, 3616 (1973).

    Google Scholar 

  94. D. S. Kemp, D. D. Cox, and K. G. Paul,J. Am. Chem. Soc. 97, 7312 (1975).

    Google Scholar 

  95. G. N. Lewis and M. Randall,Thermodynamics, revised by K. S. Pitzer and L. Brewer, 2nd ed. (McGraw-Hill, New York, 1961), Chap. 34.

    Google Scholar 

  96. J. Leffler and E. Grunwald,Rates and Equilibria of Organic Reactions (Wiley, New York, 1963), pp. 28–29.

    Google Scholar 

  97. E. N. Lassettre,J. Am. Chem. Soc. 59, 1383 (1937).

    Google Scholar 

  98. C. R. Witschenke and C. A. Kraus,J. Am. Chem. Soc. 69, 2472 (1947).

    Google Scholar 

  99. A. Saek and R. M. Fuoss,J. Am. Chem. Soc. 76, 5905 (1954).

    Google Scholar 

  100. E. L. Strong and C. A. Kraus,J. Am. Chem. Soc. 72, 166 (1950).

    Google Scholar 

  101. E. Hirsch and R. M. Fuoss,J. Am. Chem. Soc. 82, 1018 (1960).

    Google Scholar 

  102. A. L. Powel and A. E. Martell,J. Am. Chem. Soc. 79, 2118 (1957).

    Google Scholar 

  103. R. M. Fuoss and E. Hirsch,J. Am. Chem. Soc. 82, 1013 (1960).

    Google Scholar 

  104. F. Accascina, E. L. Swarts, P. L. Mercier, and C. A. Kraus,Proc. Nat. Acad. Sci. U.S.A. 39, 917 (1953).

    Google Scholar 

  105. H. L. Curry and W. R. Gilkerson,J. Am. Chem. Soc. 79, 4021 (1957).

    Google Scholar 

  106. Y. H. Inami, H. K. Bodenseh, and J. B. Ramsay,J. Am. Chem. Soc. 83, 4745 (1961).

    Google Scholar 

  107. H. K. Bodenseh and J. B. Ramsay,J. Phys. Chem. 67, 143 (1963).

    Google Scholar 

  108. J. J. Zwolenik and R. M. Fuoss,J. Phys. Chem. 68, 903 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnett, E.M., Chawla, B. & Hornung, N.J. The hydration of anions in nonaqueous media. J Solution Chem 6, 781–818 (1977). https://doi.org/10.1007/BF00648070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648070

Key words

Navigation