Skip to main content
Log in

Influence of aging and drug treatment on the bioenergetics of hypoxic brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synaptosomes isolated from the forebrain of rats of different ages (20, 60 and 100 weeks of age) were incubated in Krebs-Henseleit-Hepes (pH 7.4) buffer, for 10 min at 24°C. The energetic state was defined by the redox state of the intramitochondrial NAD-couple (ΔGox-red) and the phosphorylation state of adenine nucleotide system (ΔGATP). The biological energy “lost” by the system during the coupled reactions was estimated by the ΔΔG=ΔGox-red−ΔGATP. The animals were submitted for 10 min to different degrees of in vivo hypoxia. To elucidate the mechanism of action, the effect of the pretreatment with drugs acting on oxygen availability (almitrine) or on microcirculation and metabolism (δ-yohimbine) was tested. In synaptosomes isolated from the forebrain of animals submitted to moderate degree of hypoxia (oxygen arterial partial pressure ranging between 32 and 29 mmHg) the efficiency of the system was quite similar to that observed in normoxia, with the exception of the older rats. In synaptosomes isolated from the forebrain of rats submitted to severe degree of hypoxia (oxygen arterial partial pressure ranging between 20 and 18 mmHg) the efficiency of the system was markedly altered as a function of both aging and severity of hypoxemia. The pretreatment with the agent increasing the oxygen availability partially modified the efficiency of the system, the alpha-blocking agent being less important. The drug action was markedly related to both the age and the degree of hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Erreish, G. M., and Sanadi, D. R. 1978. Age-related changes of cytochrome concentration of myocardial mitochondria. Mech. Ageing Dev. 7:425–432.

    Google Scholar 

  2. Benzi, G. 1979. Enzymatic activities related to energy transduction in the mature rat brain. Interdiscipl. Topics Geront. 15:104–120.

    Google Scholar 

  3. Benzi, G., Arrigoni, E., Dagani, F., Marzatico, F., Curti, D., Raimondo, S., Dossena, M., Polgatti M., and Villa, R. F. 1980. Age-dependent modification of drug interference on the enzymatic activities of the rat brain. Exp. Geront. 15:593–603.

    Google Scholar 

  4. Curti, D., Giangaré, M. C., Redolfi, M. E., Fugaccia, I., and Benzi, G. 1990. Age-related modifications of cytochrome c oxidase activity in discrete brain regions. Mech. Ageing Dev., in press.

  5. Nohl, H. 1986. Oxygen radical release in mitochondria: influence of age. Pages 77–97, in Johnson, J. E., Jr., Walford, R., Harman, D., and Miquel, J. (eds.), Modern Aging Research, vol. 8: Free Radicals, Aging, and Degenerative Diseases, Alan R. Liss, New York.

    Google Scholar 

  6. Rafalowska, U., Erecinska, M., and Wilson, D. F. 1980. Energy metabolism in rat brain synaptosomes from nembutal-anesthetized and nonanesthetized animals. J. Neurochem. 34:1380–1386.

    Google Scholar 

  7. Benzi, G., Arrigoni, E., Pastoris, O., Raimondo, S., Fulle, D., Curti, D., and Villa, R. F. 1981. Metabolic changes induced by acute hypoxia on the synaptosomes from dog brain. Eur. Neurol. 20:235–244.

    Google Scholar 

  8. Benzi, G., Arrigoni, E., Agnoli, A., Raimondo, S., Fulle, D., Pastoris, O., Curti, D., and Villa, R. F. 1982. Influence of age upon cerebral metabolic changes induced by acute hypoxia on the synaptosomes from dog brain. Exp. Geront. 17:19–32.

    Google Scholar 

  9. Benzi, G., Agnoli, A., and Giuffrida, A. M. 1984. Influence of aging on cerebral derangement by acute severe hypoxia during hypotension. Neurobiol. Aging 5:213–220.

    Google Scholar 

  10. Benzi, G., Pastoris, O., Villa, R. F., and Giuffrida, A. M. 1985. Influence of aging and exogenous substances on cerebral energy metabolism in posthypoglycemic recovery. Biochem. Pharmacol. 34:1477–1483.

    Google Scholar 

  11. Benzi, G., Pastoris, O., Vercesi, L., Gorini, A., Viganotti, C., and Villa, R. F. 1987. Energetic state of aged brain during hypoxia. Gerontology 33:207–212.

    Google Scholar 

  12. Labrid, C. 1982. Current concepts on almitrine bismesylate mechanism of action. Bull. Eur. Physiopathol. Respir. 18:299–306.

    Google Scholar 

  13. Laubie, M. 1982. Effects of almitrine bismesylate on gas exchange and ventilation in the anaesthetized dog. Bull. Eur. Physiopathol. Respir. 18:279–284.

    Google Scholar 

  14. Benzi, G., Pastoris, O., Tentoni, S., and Villa, R. F. 1987. Modifications in cerebral lipid metabolism by severe glucose deprivation during aging. Neurobiol. Aging 8:457–463.

    Google Scholar 

  15. Roquebert, J., and Demichel, P. 1985. Inhibition of the alpha1 and alpha1-adrenoreceptor-mediated pressor response in pithed rats by raubasine, tetrahydroaltonine and akuammigine. Eur. J. Pharmacol. 106:203–205.

    Google Scholar 

  16. Kroneberg, G. 1985. Pharmakologie des Rauwolfia Alkaloides Raubasine (δ-yohimbine-ajmalicine). Arch. Exp. Pathol. Pharmacol. 233:72–79.

    Google Scholar 

  17. Laubie, M., and Le Douarec, J. C. 1969. Etude pharmacologique du pipratecol et d'une association médicamenteuse pipratecol-raubasine. Arzneimittelforsch. 19:1820–1826.

    Google Scholar 

  18. Nowicki, J. P., MacKenzie, E. T., and Spinnewyn, B. 1982. Effects of agents used in the pharmacotherapy of cerebrovascular disease on the oxygen consumption of isolated cerebral mitochondria. J. Cereb. Blood Flow Metab. 2:33–40.

    Google Scholar 

  19. Villa, R. F., and Pastoris, O. 1986. Influence du vieillissement sur le métabolisme énergétique cérébral pendant la récuperation posthypoglycémique chez le rat. J. Pharmacol. (Paris) 17:623–636.

    Google Scholar 

  20. Ljunggren, B., Schutz, H., and Siesjö, B. K. 1974. Changes in energy state and acid base parameters of the rat brain during complete compression ischemia. Brain Res. 73:277–289.

    Google Scholar 

  21. Ljunggren, B., Ratcheson, R. A., and Siesjö, B. K. 1974. Cerebral metabolic state following complete compression ischemia. Brain Res. 73:291–307.

    Google Scholar 

  22. Folbergrová, J., MacMillan, V., and Siesjö, B. K. 1972. The effect of moderate marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ ratio of the rat brain. J. Neurochem. 19:2497–2505.

    Google Scholar 

  23. Lamprecht, W., and Trautschold, I. 1974. ATP: determination with hexokinase and glucose-6-phosphate dehydrogenase. Vol. 4, pages 2101–2110, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York.

    Google Scholar 

  24. Jaworek, D., Gruber, W., and Bergmeyer, H. U. 1974. Adenosine-5′-diphosphate and adenosine-5′-monophosphate. Vol. 4, pages 2127–2131, in Bergmeyer, H. U. (ed.) Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York.

    Google Scholar 

  25. Hess, H. H., and Derr, J. E. 1975. Assay of inorganic and organic phosphorus in the 0.1–5 nanomole range. Anal. Biochem. 63:607–613.

    Google Scholar 

  26. Williamson, D. H., Mellanby, J., and Krebs, H. A. 1962. Enzymatic determination of D-(−)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem. J. 82:90–96.

    Google Scholar 

  27. Wilson, D. F., Stubbs, M., Veech, R. L., Erecinska, M., and Krebs, H. A. 1974. Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem. J. 140:57–64.

    Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzi, G., Pastoris, O., Marzatico, F. et al. Influence of aging and drug treatment on the bioenergetics of hypoxic brain. Neurochem Res 15, 659–665 (1990). https://doi.org/10.1007/BF00973645

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973645

Key Words

Navigation