Skip to main content
Log in

Endogenous γ-l-glutamylglutamate is a partial agonist at the N-methyl-d-aspartate receptors in cultured cerebellar granule cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

γ-l-Glutamylglutamate (LGG), an endogenous constituent of the brain, reduced the glutamateevoked increase in intracellular Ca2+ in cultured cerebellar granule cells. The extent and properties of this inhibition were different at different Mg2+ concentrations. The intracellular Ca2+ response to NMDA was slightly enhanced by 0.1 mM LGG in normal (1.3 mM) Mg2+ medium, but in Mg2+-free medium LGG was stimulatory at low (0.1–1 μM) NMDA and inhibitory at high (0.1–1 mM) NMDA concentrations. In the absence of Mg2+, LGG alone increased cytosolic free Ca2+ and depolarized the cells. These effects were potentiated by glycine and blocked by extracellular Mg2+, 2-amino-5-phosphonopentanoate (APV), 7-chlorokynurenate, 3-amino-1-hydroxypyrrolidin-2-one (HA-966) and 5,7-dinitroquinoxaline-2,3-dione (MNQX). The results indicate that LGG is a partial NMDA agonist. On the other hand, the non-NMDA antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) also inhibited the effects of LGG. This indicates an involvement of non-NMDA receptors in the actions of LGG. The consequent depolarization may also contribute to the activation of NMDA receptor-governed ionophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orrenius, S., McConkey, D. J., Bellomo, G., and Nicotera, P. 1989. Role of Ca2+ in toxic cell killing. Trends Pharmacol. Sci. 10:281–285.

    Google Scholar 

  2. Mayer, M. L., and Miller, R. J. 1990. Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol. Sci. 11:254–260.

    Google Scholar 

  3. Berridge, M. J. and Irvine, R. F. 1989. Inositol phosphates and cell signalling. Nature 341:197–205.

    Google Scholar 

  4. Récasens, M., Mayat, E., and Vignes, M. 1992. The multiple excitatory amino acid receptor subtypes and their putative interactions. Mol. Neuropharmacol. 2:15–31.

    Google Scholar 

  5. Davies, J., and Watkins, J. C. 1981. Differentiation of kainate and quisqualate receptors in the cat spinal cord by selective antagonism with γ-d (andl)-glutamylglycine. Brain Res. 206:172–177.

    Google Scholar 

  6. Jones, A. W., Smith, D. A. S., and Watkins, J. C. 1984. Structureactivity relations of dipeptide antagonists of excitatory amino acids. Neuroscience 13:573–581.

    Google Scholar 

  7. Varga, V., Janáky, R., Marnela, K.-M., Gulyás, J., Kontro, P., and Oja, S. S. 1989. Displacement of excitatory amino acid receptor ligands by acidic oligopeptides. Neurochem. Res. 14:1223–1227.

    Google Scholar 

  8. Varga, V., Janáky, R., and Oja, S. S. 1992. Modulation of glutamate agonist-induced influx of calcium into neurons by γ-l-glutamyl and β-l-aspartyl dipeptides. Neurosci. Lett. 138:270–274.

    Google Scholar 

  9. Varga, V., Janáky, R., Holopainen, I., Saransaari, P., and Oja, S. S. 1992. Effect of magnesium on calcium influx activated by glutamate and its agonists in cultured cerebellar granule cells. Neurochem. Res. 17:1195–1200.

    Google Scholar 

  10. Varga, V., Janáky, R., Marnela, K.-M., Saransaari, P., and Oja, S. S. 1994. Interactions of γ-l-glutamyltaurine with excitatory aminoacidergic neurotransmission. Neurochem. Res. 19:243–248.

    Google Scholar 

  11. Varga, V., Janáky, R., Saransaari, P., and Oja, S. S. 1994. Endogenous γ-l-glutamyl and β-l-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain. Neuropeptides 27: 19–26.

    Google Scholar 

  12. Janáky, R., Varga, V., Saransaari, P. and Oja, S. S. 1993. Glutathione modulates the N-methyl-d-aspartate receptor-activated calcium influx into cultured rat cerebellar granule cells. Neurosci. Lett. 156:153–157.

    Google Scholar 

  13. Li, X., Orwar, O., Persson, J., Sandberg, M., and Jacobson, I. 1993. γ-L-Glutamyl-l-glutamate is an endogenous dipeptide in the rat olfactory bulb which activates N-methyl-D-aspartate receptors. Neurosci. Lett. 155:42–46.

    Google Scholar 

  14. Holopainen, I., Enkvist, M. O. K., and Åkerman, K. E. O. 1989. Glutamate receptor agonists increase intracellular Ca2+ independently of voltage-gated Ca2+ channels in rat cerebellar granule cells. Neurosci. Lett. 98:57–62.

    Google Scholar 

  15. Holopainen, I., Louve, M., Enkvist, M. O. K., and Åkerman, K. E. O. 1990. Coupling of glutamatergic receptors to changes in intracellular Ca2+ in rat cerebellar granule cells in primary culture. J. Neurosci. Res. 25:187–193.

    Google Scholar 

  16. Holopainen, I., Louve, M., and Åkerman, K. E. O. 1991. Interactions of glutamate receptor agonists coupled to changes in intracellular Ca2+ in rat cerebellar granule cells in primary culture. J. Neurochem. 57:1729–1734.

    Google Scholar 

  17. Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Metcalfe, J. C. 1983. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J. Biol. Chem. 258: 4876–4882.

    Google Scholar 

  18. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    Google Scholar 

  19. Tsien, R. Y., Pozzan, T., and Rink, T. J. 1982. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell. Biol. 94:325–334.

    Google Scholar 

  20. Marquardt, D. T. 1963. An algorithm for least squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 11:431–442.

    Google Scholar 

  21. Snedecor, G. W. 1956. Statistical Methods. 5th edn. Iowa State College Press, Ames.

    Google Scholar 

  22. Kakimoto, Y., Nakajima, T., Kanazawa, A., Takesada, M., and Sano, I. 1964. Isolation of γ-l-glutamyl-l-glutamic acid and γ-l-glutamyl-l-glutamine from bovine brain. Biochim. Biophys. Acta 93:333–338.

    Google Scholar 

  23. Orwar, O., Li, X., Andiné, P., Bergström, C.-H., Hagberg, H., Folestad, S., and Sandberg, M. 1994. Increased intra- and extracellular concentrations of γ-glutamylglutamate and related dipeptides in the ischemic rat striatum: involvement of γ-glutamyltranspeptidase. J. Neurochem. 63:1371–1376.

    Google Scholar 

  24. Andiné, P., Orwar, O., Jacobson, I., Sandberg, M., and Hagberg, H. 1991. Extracellular acidic sulfur-containing amino acids and γ-glutamyl peptides in global ischemia: postischemic recovery of neuronal activity is paralleled by a tetrodotoxin-sensitive increase in cysteine sulfinate in the CA1 of the rat hippocampu. J. Neurochem. 57:230–236.

    Google Scholar 

  25. Zängerle, L., Cuénod, M., Winterhalter, K. H., and Do, K. Q. 1992. Screening of thiol compounds: depolarization-induced release of glutathione and cysteine from rat brain slices. J. Neurochem. 59:181–189.

    Google Scholar 

  26. Gallo, V., Kingsbury, A., Balázs, R., and Jorgensen, O. S. 1987. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7:2203–2213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, V., Janáky, R., Holopainen, I. et al. Endogenous γ-l-glutamylglutamate is a partial agonist at the N-methyl-d-aspartate receptors in cultured cerebellar granule cells. Neurochem Res 20, 1471–1476 (1995). https://doi.org/10.1007/BF00970596

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970596

Key Words

Navigation